To calculate the standard deviation, we first find the variance Var(X) using the following formula:
Var(X)=E(X2)−(E(X))2
We already found E(X)=2. Now we need to compute E(X2):
- For x=0: 02imesP(X=0)=0imes0=0
- For x=1: 12imesP(X=1)=1imes0.3=0.3
- For x=2: 22imesP(X=2)=4imes0.5=2.0
- For x=3: 32imesP(X=3)=9imes0.1=0.9
- For x=4: 42imesP(X=4)=16imes0.1=1.6
Now, summing these values gives:
E(X2)=0+0.3+2.0+0.9+1.6=5.8
Now substituting back to find the variance:
Var(X)=5.8−22=5.8−4=1.8
Finally, the standard deviation is the square root of the variance:
extStandarddeviation=extsqrt(1.8)≈1.3416
Rounding to one decimal place gives:
extStandarddeviation=1.3