Photo AI

18 (3 marks) (a) Differentiate $e^{2x+1}$ - HSC - SSCE Mathematics Advanced - Question 18 - 2020 - Paper 1

Question icon

Question 18

18-(3-marks)--(a)-Differentiate-$e^{2x+1}$-HSC-SSCE Mathematics Advanced-Question 18-2020-Paper 1.png

18 (3 marks) (a) Differentiate $e^{2x+1}$. (b) Hence, find $\int (x + 1)e^{2x} dx$.

Worked Solution & Example Answer:18 (3 marks) (a) Differentiate $e^{2x+1}$ - HSC - SSCE Mathematics Advanced - Question 18 - 2020 - Paper 1

Step 1

Differentiate $e^{2x+1}$

96%

114 rated

Answer

To differentiate the function e2x+1e^{2x+1}, we can apply the chain rule. The derivative of eue^{u} is eududxe^{u} \frac{du}{dx}, where u=2x+1u = 2x + 1. First, we need to differentiate uu:

dudx=2.\frac{du}{dx} = 2.

Now, applying the chain rule:

ddx(e2x+1)=e2x+12=2e2x+1.\frac{d}{dx}(e^{2x+1}) = e^{2x+1} \cdot 2 = 2e^{2x+1}.

Thus, the final answer is:

2e2x+1.2e^{2x+1}.

Step 2

Hence, find $\int (x + 1)e^{2x} dx$

99%

104 rated

Answer

To find the integral, we can use integration by parts. Let:

  • u=x+1u = x + 1
  • dv=e2xdxdv = e^{2x} dx.

Then, we differentiate and integrate:

  • du=dxdu = dx
  • v=12e2xv = \frac{1}{2} e^{2x}.

Now applying the integration by parts formula:

udv=uvvdu,\int u \, dv = uv - \int v \, du,

we have:

(x+1)e2xdx=(x+1)12e2x12e2xdx.\int (x + 1)e^{2x} dx = (x + 1) \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} dx.

The integral e2xdx=12e2x\int e^{2x} dx = \frac{1}{2} e^{2x}, so:

(x+1)e2xdx=(x+1)12e2x14e2x+C.\int (x + 1)e^{2x} dx = (x + 1) \cdot \frac{1}{2} e^{2x} - \frac{1}{4} e^{2x} + C.

Thus, the final answer is:

14e2x(2(x+1)1)+C=14e2x(2x+1)+C.\frac{1}{4} e^{2x} (2(x + 1) - 1) + C = \frac{1}{4} e^{2x} (2x + 1) + C.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;