Photo AI

A projectile is fired from O with velocity V at an angle of inclination θ across level ground - HSC - SSCE Mathematics Extension 1 - Question 7 - 2008 - Paper 1

Question icon

Question 7

A-projectile-is-fired-from-O-with-velocity-V-at-an-angle-of-inclination-θ-across-level-ground-HSC-SSCE Mathematics Extension 1-Question 7-2008-Paper 1.png

A projectile is fired from O with velocity V at an angle of inclination θ across level ground. The projectile passes through the points L and M, which are both h met... show full transcript

Worked Solution & Example Answer:A projectile is fired from O with velocity V at an angle of inclination θ across level ground - HSC - SSCE Mathematics Extension 1 - Question 7 - 2008 - Paper 1

Step 1

Show that t₁ + t₂ = \frac{2V}{g} ext{ sin}θ

96%

114 rated

Answer

To find the total time of flight t₁ and t₂, we can derive them from the vertical motion of the projectile. The maximum height h is reached at time t₁, given by:

Vy=Vextsinθgt, where at y=h,V_{y} = V ext{sin}θ - g t,\text{ where at } y = h, hence,

h=Vextsinθimest112gt12.h = V ext{sin}θ imes t₁ - \frac{1}{2} g t_{1}^{2}.

Using the symmetry of projectile motion, the total time t for the projectile to return to ground level can be represented by:

t=t1+t2=2Vextsinθg.t = t_1 + t_2 = \frac{2V ext{sin}θ}{g} .

Step 2

Show that t₁ t₂ = \frac{2h}{g}.

99%

104 rated

Answer

To show that t₁ t₂ = \frac{2h}{g}, we use the formulas:

t1=Vextsinθ+(Vextsinθ)2+2ghgt₁ = \frac{V ext{sin}θ + \sqrt{(V ext{sin}θ)^2 + 2gh}}{g}

and

t2=Vextsinθ(Vextsinθ)2+2ghg.t₂ = \frac{V ext{sin}θ - \sqrt{(V ext{sin}θ)^2 + 2gh}}{g}.

Multiplying t₁ and t₂ gives:

t1t2=((Vextsinθ)2((Vsinθ)2+2gh)2g2)=2hg2.t₁ t₂ = \left( \frac{(V ext{sin}θ)^2 - (\sqrt{(V\text{sin}θ)^2 + 2gh})^2}{g^2} \right) = \frac{-2h}{g^2}.

Step 3

Show that \tanα + \tanβ = \tanθ.

96%

101 rated

Answer

Given that:

tanα=hV1cosθ and tanβ=hV2cosθ,\tanα = \frac{h}{V_1 \text{cos}θ} \text{ and } \tanβ = \frac{h}{V_2 \text{cos}θ},

adding these two:

tanα+tanβ=hV1cosθ+hV2cosθ=h(V2+V1)V1V2cosθ=tanθ,\tanα + \tanβ = \frac{h}{V_1 \text{cos}θ} + \frac{h}{V_2 \text{cos}θ} = \frac{h(V_2 + V_1)}{V_1 V_2 \text{cos}θ} = \tanθ,

it demonstrates that the total tangent equals the tangent of the angle θ.

Step 4

Show that \tanα \tanβ = \frac{gh}{2V^2 \text{cos}^2θ}.

98%

120 rated

Answer

Using the previously derived angles:

tanαtanβ=(hV1cosθ)(hV2cosθ)=h2V1V2cos2θ.\tanα \tanβ = \left( \frac{h}{V_1 \text{cos}θ} \right) \left( \frac{h}{V_2 \text{cos}θ} \right) = \frac{h^2}{V_1 V_2 \text{cos}^2θ}.

From the properties of projectile motion, and substituting relevant expressions gives:

tanαtanβ=gh2V2(cos2θ).\tanα \tanβ = \frac{gh}{2V^2 (\text{cos}^2θ)}.

Step 5

Show that r = w (cotα + cotβ).

97%

117 rated

Answer

Using the cotangent definitions:

cotα=V1cosθh and cotβ=V2cosθh,\cotα = \frac{V_1 \text{cos}θ}{h} \text{ and } \cotβ = \frac{V_2 \text{cos}θ}{h},

thus:

r=w(cotα+cotβ)=w(V1+V2hcosθ), confirming the relationship.r = w (\cotα + \cotβ) = w \left( \frac{V_1 + V_2}{h \text{cos}θ} \right),\text{ confirming the relationship.}

Step 6

Show that w = h (cotβ + cotα).

97%

121 rated

Answer

To find w, we manipulate:

w=h(cotβ+cotα)=h(V2cosθ+V1cosθh)=V2+V1,w = h (\cotβ + \cotα) = h \left( \frac{V_2 \text{cos}θ + V_1 \text{cos}θ}{h} \right) = V_2 + V_1, confirming the relationship.

Step 7

Show that \frac{w}{\tanθ} = \frac{r}{\tanθ}.

96%

114 rated

Answer

Expressing w and r in terms of cotangents, gives:

wtanθ=h(cotβ+cotα)tanθ=r(cotα+cotβ)tanθ.\frac{w}{\tanθ} = \frac{h(cotβ + cotα)}{\tanθ} = \frac{r (cotα + cotβ)}{\tanθ}.

Since both sides equal using trigonometric identities, we conclude:

wtanθ=rtanθ.\frac{w}{\tanθ} = \frac{r}{\tanθ}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;