Photo AI

1. (a) Factorise $8x^3 + 27$ - HSC - SSCE Mathematics Extension 1 - Question 1 - 2009 - Paper 1

Question icon

Question 1

1.-(a)-Factorise-$8x^3-+-27$-HSC-SSCE Mathematics Extension 1-Question 1-2009-Paper 1.png

1. (a) Factorise $8x^3 + 27$. (b) Let $f(x) = ext{ln}(x - 3)$. What is the domain of $f(x)$? (c) Find $\lim_{x \to 0} \frac{\sin 2x}{x}$. (d) Solve the inequalit... show full transcript

Worked Solution & Example Answer:1. (a) Factorise $8x^3 + 27$ - HSC - SSCE Mathematics Extension 1 - Question 1 - 2009 - Paper 1

Step 1

Factorise $8x^3 + 27$

96%

114 rated

Answer

To factor 8x3+278x^3 + 27, we can observe that it is in the form of a sum of cubes, which can be factored using the identity: a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2) Here, let a=2xa = 2x and b=3b = 3. Therefore: 8x3+27=(2x+3)((2x)22ximes3+32)8x^3 + 27 = (2x + 3)((2x)^2 - 2x imes 3 + 3^2) Calculating the second factor: =(2x+3)(4x26x+9)= (2x + 3)(4x^2 - 6x + 9)

Step 2

Let $f(x) = ext{ln}(x - 3)$. What is the domain of $f(x)$?

99%

104 rated

Answer

The function f(x)=extln(x3)f(x) = ext{ln}(x - 3) is defined only when its argument is positive. Therefore, we need: x3>0    x>3x - 3 > 0 \implies x > 3 Thus, the domain of f(x)f(x) is (3,)(3, \infty).

Step 3

Find $\lim_{x \to 0} \frac{\sin 2x}{x}$

96%

101 rated

Answer

To evaluate this limit, we can use the standard limit property that limx0sinxx=1 \lim_{x \to 0} \frac{\sin x}{x} = 1. We rewrite the limit as: limx0sin2xx=limx0sin2x2x2\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} \frac{\sin 2x}{2x} \cdot 2 Applying the limit: =21=2= 2 \cdot 1 = 2

Step 4

Solve the inequality $\frac{x + 3}{2x} > 1$

98%

120 rated

Answer

To solve the inequality:

  1. Rearrange it: x+32x1>0\frac{x + 3}{2x} - 1 > 0
  2. Combine the fractions: x+32x2x>0    x+32x>0\frac{x + 3 - 2x}{2x} > 0 \implies \frac{-x + 3}{2x} > 0
  3. This requires that both the numerator and denominator are either positive or negative. We find the critical points:
  • From x+3=0    x=3-x + 3 = 0 \implies x = 3
  • From 2x=0    x=02x = 0 \implies x = 0 (not included to avoid division by zero)
  1. Test intervals:
  • For x<0x < 0: x+32x<0\frac{-x + 3}{2x} < 0
  • For 0<x<30 < x < 3: x+32x>0\frac{-x + 3}{2x} > 0
  • For x>3x > 3: x+32x<0\frac{-x + 3}{2x} < 0
  1. From this, the solution is: 0<x<30 < x < 3

Step 5

Differentiate $x \cos^2 x$

97%

117 rated

Answer

To differentiate the function y=xcos2xy = x \cos^2 x, we apply the product rule: dydx=ddx(x)cos2x+xddx(cos2x)\frac{dy}{dx} = \frac{d}{dx}(x) \cdot \cos^2 x + x \cdot \frac{d}{dx}(\cos^2 x) Calculating each part:

  1. ddx(x)=1\frac{d}{dx}(x) = 1
  2. ddx(cos2x)=2cosx(sinx)=2cosxsinx\frac{d}{dx}(\cos^2 x) = 2\cos x \cdot (-\sin x) = -2\cos x \sin x Putting it all together: dydx=cos2x2xcosxsinx\frac{dy}{dx} = \cos^2 x - 2x \cos x \sin x

Step 6

Using the substitution $u = x^3 + 1$, or otherwise, evaluate $\int_0^2 e^{2x^2 + 1} dx$

97%

121 rated

Answer

Using the substitution u=x3+1u = x^3 + 1, we differentiate: du=3x2dx    dx=du3x2du = 3x^2 dx \implies dx = \frac{du}{3x^2} Change the limits:

  • When x=0,u=1x = 0, u = 1
  • When x=2,u=9x = 2, u = 9 The integral becomes: 19e2(u1)du3x2\int_1^9 e^{2(u - 1)} \cdot \frac{du}{3x^2} However, we relate x2x^2 in terms of uu: x2=(u1)23x^2 = (u - 1)^{\frac{2}{3}}. This results in an intricate transformation. Alternatively, directly integral of e2x2+1e^{2x^2 + 1} may need numerical methods if analytical methods become complex due to substitutions.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;