Photo AI

The sketch shows the graph of the curve $y = f(x)$ where $f(x) = 2 ext{cos} \left( \frac{x}{3} \right)$ - HSC - SSCE Mathematics Extension 1 - Question 5 - 2001 - Paper 1

Question icon

Question 5

The-sketch-shows-the-graph-of-the-curve-$y-=-f(x)$-where-$f(x)-=-2--ext{cos}-\left(-\frac{x}{3}-\right)$-HSC-SSCE Mathematics Extension 1-Question 5-2001-Paper 1.png

The sketch shows the graph of the curve $y = f(x)$ where $f(x) = 2 ext{cos} \left( \frac{x}{3} \right)$. The area under the curve for $0 \leq x \leq 3$ is shaded. ... show full transcript

Worked Solution & Example Answer:The sketch shows the graph of the curve $y = f(x)$ where $f(x) = 2 ext{cos} \left( \frac{x}{3} \right)$ - HSC - SSCE Mathematics Extension 1 - Question 5 - 2001 - Paper 1

Step 1

(i) Find the y intercept.

96%

114 rated

Answer

To find the y-intercept of the function, we need to evaluate f(0)f(0): f(0)=2cos(0)=21=2.f(0) = 2 \text{cos}(0) = 2 \cdot 1 = 2. Hence, the y-intercept is at the point (0,2)(0, 2).

Step 2

(ii) Determine the inverse function $y = f^{-1}(x)$, and write down the domain D of this inverse function.

99%

104 rated

Answer

To find the inverse function, we set y=f(x)y = f(x): y=2cos(x3).y = 2 \text{cos} \left( \frac{x}{3} \right). To find the inverse, we need to solve for xx: y=2cos(x3)cos(x3)=y2.y = 2 \text{cos} \left( \frac{x}{3} \right) \Rightarrow \text{cos} \left( \frac{x}{3} \right) = \frac{y}{2}. Thus, we have: x3=cos1(y2)x=3cos1(y2).\frac{x}{3} = \text{cos}^{-1} \left( \frac{y}{2} \right) \Rightarrow x = 3 \cdot \text{cos}^{-1} \left( \frac{y}{2} \right). So, the inverse function is: y=f1(x)=3cos1(x2).y = f^{-1}(x) = 3 \cdot \text{cos}^{-1} \left( \frac{x}{2} \right).

Domain D: Since the cosine function ranges from 1-1 to 11, we have: y2[1,1], thus, y[2,2].\frac{y}{2} \in [-1, 1], \text{ thus, } y \in [-2, 2].

Step 3

(iii) Calculate the area of the shaded region.

96%

101 rated

Answer

To find the area under the curve from x=0x = 0 to x=3x = 3, we calculate the integral: A=03f(x)  dx=032cos(x3)  dx.A = \int_{0}^{3} f(x) \; dx = \int_{0}^{3} 2 \cos \left( \frac{x}{3} \right) \; dx. Using substitution, let u=x3dx=3duu = \frac{x}{3} \Rightarrow dx = 3 \, du. Changing the limits accordingly: When x=0,u=0x=0, u=0 and when x=3,u=1x=3, u=1: A=2013cos(u)  du=601cos(u)  du=6[sin(u)]01=6(sin(1)sin(0))=6sin(1).A = 2 \int_{0}^{1} 3 \cos(u) \; du = 6 \int_{0}^{1} \cos(u) \; du = 6 [\sin(u)]_{0}^{1} = 6(\sin(1) - \sin(0)) = 6\sin(1). So, the area of the shaded region is: A=6sin(1).A = 6\sin(1).

Step 4

(b) By using the binomial expansion, show that $(q + p)^{n} - (q - p)^{n} = 2 \binom{n}{1} q^{n-1} p + 2 \binom{n}{3} q^{n-3} p^{3} + \cdots$.

98%

120 rated

Answer

Using the binomial theorem: (q+p)n=k=0n(nk)qnkpk,(q + p)^{n} = \sum_{k=0}^{n} \binom{n}{k} q^{n-k} p^{k}, (qp)n=k=0n(nk)qnk(p)k.(q - p)^{n} = \sum_{k=0}^{n} \binom{n}{k} q^{n-k} (-p)^{k}.

Subtracting these gives: (q+p)n(qp)n=2k=0,k oddn(nk)qnkpk.(q + p)^{n} - (q - p)^{n} = 2 \sum_{k=0, k \text{ odd}}^{n} \binom{n}{k} q^{n-k} p^{k}.

This shows that the coefficients of odd powers of pp yield: 2(n1)qn1p+2(n3)qn3p3+.2 \binom{n}{1} q^{n-1} p + 2 \binom{n}{3} q^{n-3} p^{3} + \cdots.

Step 5

What is the last term in the expansion when n is odd? What is the last term in the expansion when n is even?

97%

117 rated

Answer

When nn is odd, the last term corresponds to k=nk = n which is: 2(nn)q0pn=2pn.2 \binom{n}{n} q^{0} p^{n} = 2 p^{n}. When nn is even, the last term corresponds to k=n1k = n - 1 which is: 2(nn1)q1pn1=2nqpn1.2 \binom{n}{n - 1} q^{1} p^{n - 1} = 2n q p^{n - 1}.

Step 6

(i) Suppose $0 \leq r \leq n$. What is the probability that exactly r 'sixes' appear in the uppermost position?

97%

121 rated

Answer

The probability of rolling a six on a fair die is rac{1}{6}, and of not rolling a six is rac{5}{6}. Thus, the probability of having exactly r sixes in n rolls is given by: P(X=r)=(nr)(16)r(56)nr.P(X = r) = \binom{n}{r} \left( \frac{1}{6} \right)^{r} \left( \frac{5}{6} \right)^{n-r}.

Step 7

(ii) By using the result of part (b), or otherwise, show that the probability that an odd number of 'sixes' appears is \[ \frac{1}{2} \left[ 1 - \left( \frac{2}{3} \right)^{n} \right]. \]

96%

114 rated

Answer

Using the binomial expansion from part (b), we can see that the total probability of getting an odd number of successes is: P(Odd)=12((q+p)n(qp)n).P(Odd) = \frac{1}{2}\left( (q+p)^{n} - (q-p)^{n} \right). Substituting q=56q = \frac{5}{6} and p=16p = \frac{1}{6}: P(Odd)=12[(56+16)n(5616)n]=12(1(23)n).P(Odd) = \frac{1}{2} \left[ \left( \frac{5}{6} + \frac{1}{6} \right)^{n} - \left( \frac{5}{6} - \frac{1}{6} \right)^{n} \right] = \frac{1}{2} \left( 1 - \left( \frac{2}{3} \right)^{n} \right).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;