Photo AI
Question 5
What is the value of $ an heta$? A. $rac{1}{8}$ B. $rac{1}{7}$ C. $rac{1}{2}$ D. $rac{4}{7}$ What is the value of $$ ext{lim}_{x o 0} rac{ ext{sin}(3x) ext... show full transcript
Step 1
Step 2
Answer
To evaluate this limit, we can use the fact that:
ext{sin}(x) ext{cos}(x) = rac{1}{2} ext{sin}(2x)
Thus, we can rewrite the limit as:
ext{lim}_{x o 0} rac{rac{1}{2} ext{sin}(6x)}{12x} = rac{1}{24} ext{lim}_{x o 0} rac{ ext{sin}(6x)}{x}
Using the limit property ext{lim}_{x o 0} rac{ ext{sin}(kx)}{x} = k, we find:
ext{lim}_{x o 0} rac{ ext{sin}(6x)}{x} = 6
Thus,
ext{lim}_{x o 0} rac{ ext{sin}(3x) ext{cos}(3x)}{12x} = rac{1}{24} imes 6 = rac{1}{4}
So the answer is rac{1}{4}.
Report Improved Results
Recommend to friends
Students Supported
Questions answered