Photo AI

Use the Question 11 Writing Booklet - HSC - SSCE Mathematics Extension 1 - Question 11 - 2021 - Paper 1

Question icon

Question 11

Use-the-Question-11-Writing-Booklet-HSC-SSCE Mathematics Extension 1-Question 11-2021-Paper 1.png

Use the Question 11 Writing Booklet. (a) Find $(i + 6j) + (2i - 7j)$. (b) Expand and simplify $(2a - b)^4$. (c) Use the substitution $u = x + 1$ to find $\int \sq... show full transcript

Worked Solution & Example Answer:Use the Question 11 Writing Booklet - HSC - SSCE Mathematics Extension 1 - Question 11 - 2021 - Paper 1

Step 1

Find $(i + 6j) + (2i - 7j)$

96%

114 rated

Answer

To find the sum of the vectors, combine the respective components:

(i+6j)+(2i7j)=(1+2)i+(67)j=3ij.(i + 6j) + (2i - 7j) = (1 + 2)i + (6 - 7)j = 3i - j.

Thus, the answer is 3ij3i - j.

Step 2

Expand and simplify $(2a - b)^4$

99%

104 rated

Answer

Using the binomial theorem, we expand:

(2ab)4=k=04(4k)(2a)4k(b)k.(2a - b)^4 = \sum_{k=0}^4 \binom{4}{k} (2a)^{4-k} (-b)^k.

Calculating each term gives:

  • For k=0k=0: 16a416a^4
  • For k=1k=1: 32a3b-32a^3b
  • For k=2k=2: 24a2b224a^2b^2
  • For k=3k=3: 8ab3-8ab^3
  • For k=4k=4: b4b^4

Thus, combining all terms:

(2ab)4=16a432a3b+24a2b28ab3+b4.(2a - b)^4 = 16a^4 - 32a^3b + 24a^2b^2 - 8ab^3 + b^4.

Step 3

Use the substitution $u = x + 1$ to find $\int \sqrt{x+1} \, dx$

96%

101 rated

Answer

Making the substitution u=x+1u = x + 1 means x=u1x = u - 1 which gives:

udu=23u3/2+C=23(x+1)3/2+C.\int \sqrt{u} \, du = \frac{2}{3}u^{3/2} + C = \frac{2}{3}(x+1)^{3/2} + C.

Step 4

A committee containing 5 men and 3 women is to be formed from a group of 10 men and 8 women. In how many different ways can the committee be formed?

98%

120 rated

Answer

To form the committee:

  • Choose 5 men from 10:
(105).\binom{10}{5}.
  • Choose 3 women from 8:
(83).\binom{8}{3}.

Total ways to form the committee:

(105)×(83)=252×56=14112.\binom{10}{5} \times \binom{8}{3} = 252 \times 56 = 14112.

Step 5

At what rate is the volume of the bubble increasing when its radius reaches 0.6 mm?

97%

117 rated

Answer

The volume VV of a sphere is given by:

V=43πr3.V = \frac{4}{3}\pi r^3.

Using the chain rule:

dVdt=dVdrdrdt.\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}.

Calculating:

dVdr=4πr2=4π(0.6)2=4π(0.36).\frac{dV}{dr} = 4\pi r^2 = 4\pi (0.6)^2 = 4\pi (0.36).

Thus:

dVdt=4π(0.36)0.2=0.144π mm3/s0.4524 mm3/sext(toonedecimalplace).\frac{dV}{dt} = 4\pi (0.36) \cdot 0.2 = 0.144\pi \text{ mm}^3/s \approx 0.4524 \text{ mm}^3/s ext{ (to one decimal place)}.

Step 6

Evaluate $\int_0^{\sqrt{3}} \frac{1}{\sqrt{4 - x^2}} \, dx$

97%

121 rated

Answer

This integral can be solved using a trigonometric substitution: sin1(x2)\sin^{-1}(\frac{x}{2}) gives:

0314x2dx=sin1(32)sin1(0)=π30=π3.\int_0^{\sqrt{3}} \frac{1}{\sqrt{4 - x^2}} \, dx = \sin^{-1}(\frac{\sqrt{3}}{2}) - \sin^{-1}(0) = \frac{\pi}{3} - 0 = \frac{\pi}{3}.

Step 7

By factorising, or otherwise, solve $2\sin^3x + 2\sin^2x - \sin x - 1 = 0$ for $0 \leq x \leq 2\pi$

96%

114 rated

Answer

Rearranging gives:

sinx(2sin2x+2sinx1)=0.\sin x(2\sin^2 x + 2\sin x - 1) = 0.

Thus:

  • One solution is sinx=0\sin x = 0: x=0,π,2π.x = 0, \pi, 2\pi.
  • For the quadratic, use the quadratic formula:
2sin2x+2sinx1=0    sinx=2±4+84=2±234=1±32.2\sin^2 x + 2\sin x - 1 = 0 \implies \sin x = \frac{-2 \pm \sqrt{4 + 8}}{4} = \frac{-2 \pm 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}.

Giving solutions:

  • sinx=1+32\sin x = \frac{-1 + \sqrt{3}}{2} and $\sin x = \frac{-1 - \sqrt{3}}{2}.
Solutions exist for: - $\frac{\pi}{3}, \frac{2\pi}{3}$.

Step 8

What is the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$?

99%

104 rated

Answer

Using Viète's formulas, for the polynomial x43x3+6x2+αx+β=0x^4 - 3x^3 + 6x^2 + \alpha x + \beta = 0: α+β+γ+δ=3,\alpha + \beta + \gamma + \delta = 3, where \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = 6. Formally: 1α+1β+1γ+1δ=αβ+αγ+αδ+βγ+βδ+γδαβγδ.\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta}{\alpha\beta\gamma\delta}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;