Photo AI

Question 1 (12 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 1 - Question 1 - 2006 - Paper 1

Question icon

Question 1

Question-1-(12-marks)-Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 1-Question 1-2006-Paper 1.png

Question 1 (12 marks) Use a SEPARATE writing booklet. (a) Find $$ \int \frac{dx}{49 + x^2}. $$ (b) Using the substitution $u = x^2 + 8$, or otherwise, find $$ \int... show full transcript

Worked Solution & Example Answer:Question 1 (12 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 1 - Question 1 - 2006 - Paper 1

Step 1

Find $$\int \frac{dx}{49 + x^2}$$

96%

114 rated

Answer

To solve the integral, we use the formula for the integral of the form dxa2+x2=1atan1(xa)+C \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C where a2=49a^2 = 49. Thus, a=7a = 7. Hence,

dx49+x2=17tan1(x7)+C.\int \frac{dx}{49 + x^2} = \frac{1}{7} \tan^{-1}\left(\frac{x}{7}\right) + C.

Step 2

Using the substitution $u = x^2 + 8$, or otherwise, find $$\int x \sqrt{4 + 8 dx}$$

99%

104 rated

Answer

To solve this, we apply the substitution:

  1. Let u=x2+8u = x^2 + 8, then du=2xdxdu = 2x \, dx. Hence, dx=du2xdx = \frac{du}{2x}.
  2. Rewrite the integral in terms of uu: xu4du2x=12u4du.\int x \sqrt{u - 4} \frac{du}{2x} = \frac{1}{2} \int \sqrt{u - 4} \, du.
  3. To integrate, use the formula: uadu=23(ua)32+C.\int \sqrt{u - a} \, du = \frac{2}{3}(u - a)^{\frac{3}{2}} + C.
  4. Thus: 1223(u4)32+C=13(x2+4)32+C.\frac{1}{2} \cdot \frac{2}{3}(u - 4)^{\frac{3}{2}} + C = \frac{1}{3}(x^2 + 4)^{\frac{3}{2}} + C.

Step 3

Evaluate $$\lim_{x \to 0} \frac{\sin 5x}{3x}$$

96%

101 rated

Answer

For this limit, we apply the limit property:

limx0sinkxx=k.\lim_{x \to 0} \frac{\sin kx}{x} = k. Setting k=5k = 5, we have: limx0sin5x3x=53.\lim_{x \to 0} \frac{\sin 5x}{3x} = \frac{5}{3}. Therefore, the answer is 53\frac{5}{3}.

Step 4

Using the sum of cubes, simplify: $$\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} - 1$$

98%

120 rated

Answer

Using the identity for the sum of cubes: a3+b3=(a+b)(a2ab+b2),a^3 + b^3 = (a + b)(a^2 - ab + b^2), where a=sinθandb=cosθa = \sin \theta and b = \cos \theta:

  1. The expression becomes: (sinθ+cosθ)(sin2θsinθcosθ+cos2θ)sinθ+cosθ1\frac{(\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)}{\sin \theta + \cos \theta} - 1
  2. Simplifying yields: sin2θsinθcosθ+cos2θ1=sinθcosθ.\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta - 1 = -\sin \theta \cos \theta. Thus, the final answer is: sinθcosθ.-\sin \theta \cos \theta.

Step 5

For what values of $b$ is the line $y = 12x + b$ tangent to $y = x^3$?

97%

117 rated

Answer

To determine the values of bb, we need to find where the line and the curve intersect:

  1. Set 12x+b=x312x + b = x^3.
  2. Rearranging gives: x312xb=0.x^3 - 12x - b = 0.
  3. For tangency, the above cubic must have a double root. Therefore, calculate the derivative: f(x)=3x212.f'(x) = 3x^2 - 12. Set this equal to 0 to find the double root: x2=4x=2 or x=2.x^2 = 4 \Rightarrow x = 2 \text{ or } x = -2.
  4. Substitute x=2x = 2 into the original equation: y=12(2)+b=8b=16.y = 12(2) + b = 8 \Rightarrow b = -16.
  5. Substitute x=2x = -2: y=12(2)+b=8b=24.y = 12(-2) + b = -8 \Rightarrow b = 24. The values of bb are thus 16-16 and 24.24.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;