Photo AI

a) Find the inverse of the function $y = x^3 - 2$ - HSC - SSCE Mathematics Extension 1 - Question 11 - 2016 - Paper 1

Question icon

Question 11

a)-Find-the-inverse-of-the-function-$y-=-x^3---2$-HSC-SSCE Mathematics Extension 1-Question 11-2016-Paper 1.png

a) Find the inverse of the function $y = x^3 - 2$. b) Use the substitution $u = x - 4$ to find \[ \int \sqrt{x - 4} \, dx. \] c) Differentiate $3 \tan^{-1}(2x)$. ... show full transcript

Worked Solution & Example Answer:a) Find the inverse of the function $y = x^3 - 2$ - HSC - SSCE Mathematics Extension 1 - Question 11 - 2016 - Paper 1

Step 1

Find the inverse of the function $y = x^3 - 2$.

96%

114 rated

Answer

To find the inverse, we start by swapping xx and yy:

x=y32x = y^3 - 2

Next, we add 2 to both sides:

x+2=y3x + 2 = y^3

Then we take the cube root of both sides:

y=x+23y = \sqrt[3]{x + 2}

Thus, the inverse function is:

f1(x)=x+23f^{-1}(x) = \sqrt[3]{x + 2}

Step 2

Use the substitution $u = x - 4$ to find \[ \int \sqrt{x - 4} \, dx. \]

99%

104 rated

Answer

Using the substitution u=x4u = x - 4, we find that du=dxdu = dx and x=u+4x = u + 4.

The integral becomes:

x4dx=udu\int \sqrt{x - 4} \, dx = \int \sqrt{u} \, du

Now, we can integrate:

=23u3/2+C= \frac{2}{3} u^{3/2} + C

Substituting back u=x4u = x - 4 gives:

=23(x4)3/2+C= \frac{2}{3} (x - 4)^{3/2} + C

Step 3

Differentiate $3 \tan^{-1}(2x)$.

96%

101 rated

Answer

Using the chain rule, we differentiate:

ddx(3tan1(2x))=311+(2x)22=61+4x2\frac{d}{dx}\left(3 \tan^{-1}(2x)\right) = 3 \cdot \frac{1}{1 + (2x)^2} \cdot 2 = \frac{6}{1 + 4x^2}

Step 4

Evaluate \[ \lim_{x \to 0} \frac{2 \sin x \cos x}{3x}. \]

98%

120 rated

Answer

We can use the identity sin(2x)=2sinxcosx\sin(2x) = 2 \sin x \cos x. Thus, we rewrite the limit:

limx0sin(2x)3x\lim_{x \to 0} \frac{\sin(2x)}{3x}

Using L'Hôpital's Rule:

=limx02cos(2x)3=213=23= \lim_{x \to 0} \frac{2 \cos(2x)}{3} = \frac{2 \cdot 1}{3} = \frac{2}{3}

Step 5

Solve \[ \frac{3}{2x + 5} - x > 0. \]

97%

117 rated

Answer

We start by combining the fractions:

3x(2x+5)2x+5>0\frac{3 - x(2x + 5)}{2x + 5} > 0

This simplifies to:

32x25x2x+5>0\frac{3 - 2x^2 - 5x}{2x + 5} > 0

Finding the roots of the numerator 2x25x+3=0-2x^2 - 5x + 3 = 0, we can use the quadratic formula:

x=(5)±(5)24(2)(3)2(2)=5±494x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(-2)(3)}}{2(-2)} = \frac{5 \pm \sqrt{49}}{-4}

This gives x=1x = -1 and x=32x = \frac{3}{2}. We test intervals to find:

x<1extor52<x<1x < -1 ext{ or } -\frac{5}{2} < x < -1

Step 6

Find the probability that she hits the bullseye with exactly one of her first three throws.

97%

121 rated

Answer

The probability of hitting the bullseye in one throw is 25\frac{2}{5}, and not hitting it is 35\frac{3}{5}.

The probability of hitting exactly once in three throws is given by:

P=(31)(25)1(35)2=325(35)2=325925=54125P = \binom{3}{1}\left(\frac{2}{5}\right)^1\left(\frac{3}{5}\right)^2 = 3 \cdot \frac{2}{5} \cdot \left(\frac{3}{5}\right)^2 = 3 \cdot \frac{2}{5} \cdot \frac{9}{25} = \frac{54}{125}

Step 7

Find the probability that she hits the bullseye with at least two of her first six throws.

96%

114 rated

Answer

We can find the probabilities of hitting at least two throws using the complement rule:

P(X2)=1P(X=0)P(X=1)P(X \geq 2) = 1 - P(X = 0) - P(X = 1)

Calculating these:

  1. For P(X=0)P(X = 0): =(35)6=72915625= \left(\frac{3}{5}\right)^6 = \frac{729}{15625}
  2. For P(X=1)P(X = 1): =(61)(25)1(35)5=625(35)5=6252433125=291615625= \binom{6}{1}\left(\frac{2}{5}\right)^1\left(\frac{3}{5}\right)^5 = 6 \cdot \frac{2}{5} \cdot \left(\frac{3}{5}\right)^5 = 6 \cdot \frac{2}{5} \cdot \frac{243}{3125} = \frac{2916}{15625}

So: P(X2)=172915625291615625=1364515625=1198015625P(X \geq 2) = 1 - \frac{729}{15625} - \frac{2916}{15625} = 1 - \frac{3645}{15625} = \frac{11980}{15625}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;