Photo AI

Evaluate \[ \lim_{x \to 0} \frac{\sin 3x}{x} \] - HSC - SSCE Mathematics Extension 1 - Question 1 - 2002 - Paper 1

Question icon

Question 1

Evaluate--\[-\lim_{x-\to-0}-\frac{\sin-3x}{x}-\]-HSC-SSCE Mathematics Extension 1-Question 1-2002-Paper 1.png

Evaluate \[ \lim_{x \to 0} \frac{\sin 3x}{x} \] . Find \[ \frac{d}{dx}(3x^2 \ln x) \] for \( x > 0 \). Use the table of standard integrals to evaluate \[ \int_... show full transcript

Worked Solution & Example Answer:Evaluate \[ \lim_{x \to 0} \frac{\sin 3x}{x} \] - HSC - SSCE Mathematics Extension 1 - Question 1 - 2002 - Paper 1

Step 1

Evaluate \[ \lim_{x \to 0} \frac{\sin 3x}{x} \]

96%

114 rated

Answer

To evaluate the limit, we can use the standard limit result that (\lim_{u \to 0} \frac{\sin u}{u} = 1). Rewriting the limit:

limx0sin3xx=limx0sin3x3x3=3limx0sin3x3x=31=3.\lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot 3 = 3 \cdot \lim_{x \to 0} \frac{\sin 3x}{3x} = 3 \cdot 1 = 3.

Thus, the result is (3).

Step 2

Find \[ \frac{d}{dx}(3x^2 \ln x) \] for \( x > 0 \)

99%

104 rated

Answer

To differentiate (3x^2 \ln x), we will apply the product rule. Let (u = 3x^2) and (v = \ln x), hence:

dudx=6x,dvdx=1x.\frac{du}{dx} = 6x, \quad \frac{dv}{dx} = \frac{1}{x}.

Using the product rule:

ddx(uv)=udvdx+vdudx=3x21x+lnx6x=3x+6xlnx.\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} = 3x^2 \cdot \frac{1}{x} + \ln x \cdot 6x = 3x + 6x \ln x.

Therefore, ( \frac{d}{dx}(3x^2 \ln x) = 3x + 6x \ln x ).

Step 3

Use the table of standard integrals to evaluate \[ \int_{0}^{\frac{\pi}{3}} \sec 2x \tan 2x \, dx \]

96%

101 rated

Answer

The integral can be solved using the fact that the derivative of ( \sec 2x ) is ( \sec 2x \tan 2x \cdot 2 ), which leads us to:

[\int \sec 2x \tan 2x , dx = \frac{1}{2} \sec 2x + C.]

Now we evaluate:

[ \int_{0}^{\frac{\pi}{3}} \sec 2x \tan 2x , dx = \left[ \frac{1}{2} \sec 2x \right]_{0}^{\frac{\pi}{3}} = \frac{1}{2} \sec\left(\frac{2\pi}{3}\right) - \frac{1}{2} \sec(0).]

Calculating the values gives us:

[ \frac{1}{2} \left(-2\right) - \frac{1}{2} (1) = -1 - \frac{1}{2} = -\frac{3}{2}. ]

Step 4

State the domain and range of the function \( f(x) = 3\sin^{-1}\left( \frac{x}{2} \right) \)

98%

120 rated

Answer

The function ( \sin^{-1}(x) ) has a domain of ([-1, 1]) and a range of ([-\frac{\pi}{2}, \frac{\pi}{2}]). Therefore, for ( \frac{x}{2} ) to lie within this interval, we have:

  • Domain: ( -2 \leq x \leq 2 ).

After multiplying by 3 in the function, the range becomes:

  • Range: ( -\frac{3\pi}{2} \leq f(x) \leq \frac{3\pi}{2} ).

Step 5

The variable point \( (3t, 2t^2) \) lies on a parabola. Find the Cartesian equation for this parabola.

97%

117 rated

Answer

Given the parametric equations ( x = 3t ) and ( y = 2t^2 ), we can express ( t ) in terms of ( x ):

[ t = \frac{x}{3}.]

Substituting this into the equation for ( y ):

[ y = 2\left(\frac{x}{3}\right)^2 = \frac{2x^2}{9}.]

Thus, the Cartesian equation of the parabola is:

[ y = \frac{2}{9} x^2.]

Step 6

Use the substitution \( u = 1 - x^2 \) to evaluate \[ \int_{2}^{3} \frac{2x}{(1 - x^2)^2} \, dx \]

97%

121 rated

Answer

Using the substitution ( u = 1 - x^2 ), then ( du = -2x , dx ) or ( dx = -\frac{du}{2x} ). This changes the limits of integration:

  • When ( x = 2 ), ( u = 1 - 4 = -3 ).
  • When ( x = 3 ), ( u = 1 - 9 = -8 ).

Transforming the integral:

[ \int \frac{2x}{(1 - x^2)^2} , dx = -\int_{-3}^{-8} \frac{1}{u^2} , du = -\left[-\frac{1}{u}\right]_{-3}^{-8} = -\left(-\frac{1}{-8} + \frac{1}{-3}\right). ]

Evaluating gives:

[ = \frac{1}{8} - \frac{1}{3} = \frac{3 - 8}{24} = -\frac{5}{24}.]

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;