Photo AI

Question 1 (12 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 1 - Question 1 - 2006 - Paper 1

Question icon

Question 1

Question-1-(12-marks)-Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 1-Question 1-2006-Paper 1.png

Question 1 (12 marks) Use a SEPARATE writing booklet. (a) Find $$ \int \frac{dx}{49 + x^2} $$ (b) Using the substitution $u = x^2 + 8$, or otherwise, find $$ \int ... show full transcript

Worked Solution & Example Answer:Question 1 (12 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 1 - Question 1 - 2006 - Paper 1

Step 1

Find $$ \int \frac{dx}{49 + x^2} $$

96%

114 rated

Answer

To solve this integral, we use the standard formula for the integral of the form (\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left( \frac{x}{a} \right) + C). Here, (a = 7), since (49 = 7^2).

Thus the integral becomes:

dx49+x2=17tan1(x7)+C.\int \frac{dx}{49 + x^2} = \frac{1}{7} \tan^{-1}\left( \frac{x}{7} \right) + C.

Step 2

Using the substitution $u = x^2 + 8$, or otherwise, find $$\int x \sqrt{4 + 8} \, dx$$.

99%

104 rated

Answer

First, we simplify (\sqrt{4 + 8} = \sqrt{12} = 2\sqrt{3}).

Now, substituting (u = x^2 + 8) also requires finding (du = 2x , dx) or (dx = \frac{du}{2x}). Thus we have:

x(23)dx=23xdx=23x22+C=3x2+C.\int x (2\sqrt{3}) \, dx = 2\sqrt{3} \int x \, dx = 2\sqrt{3} \cdot \frac{x^2}{2} + C = \sqrt{3}x^2 + C.

Step 3

Evaluate $$\lim_{x \to 0} \frac{\sin 5x}{3x}$$.

96%

101 rated

Answer

Using the fact that (\lim_{x \to 0} \frac{\sin kx}{kx} = 1), we can write:

limx0sin5x3x=53limx0sin5x5x=531=53.\lim_{x \to 0} \frac{\sin 5x}{3x} = \frac{5}{3} \cdot \lim_{x \to 0} \frac{\sin 5x}{5x} = \frac{5}{3} \cdot 1 = \frac{5}{3}.

Step 4

Using the sum of cubes, simplify: $$\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} - 1$$, $$ for\n0 < \theta < \frac{\pi}{2}.$$

98%

120 rated

Answer

The sum of cubes can be factored as:

sin3θ+cos3θ=(sinθ+cosθ)(sin2θsinθcosθ+cos2θ).\sin^3 \theta + \cos^3 \theta = (\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta).

Substituting this into the expression gives:

(sinθ+cosθ)(sin2θsinθcosθ+cos2θ)sinθ+cosθ1=sin2θsinθcosθ+cos2θ1.\frac{(\sin \theta + \cos \theta)(\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)}{\sin \theta + \cos \theta} - 1 = \sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta - 1.

Since (\sin^2 \theta + \cos^2 \theta = 1), we find:

sin2θ+cos2θ1=0.\sin^2 \theta + \cos^2 \theta - 1 = 0.

Step 5

For what values of $b$ is the line $y = 12x + b$ tangent to $y = x^3$?

97%

117 rated

Answer

To determine the values of (b), we first set the equations equal:

12x+b=x3.12x + b = x^3.

This implies:\n(x^3 - 12x - b = 0). For the line to be tangent, this cubic equation must have a double root. Finding the derivative:

ddx(x312xb)=3x212.\frac{d}{dx}(x^3 - 12x - b) = 3x^2 - 12.

Setting this equal to zero gives us the critical points:

x2=4x=±2.x^2 = 4 \, \Rightarrow \, x = \pm 2.

We now substitute (x = 2) back into the original equation to find (b):

12(2)+b=2324+b=8b=824=16.12(2) + b = 2^3 \Rightarrow 24 + b = 8 \Rightarrow b = 8 - 24 = -16.

Repeating for (x = -2):

12(2)+b=(2)324+b=8b=8+24=16.12(-2) + b = (-2)^3 \Rightarrow -24 + b = -8 \Rightarrow b = -8 + 24 = 16.

Thus, the values of (b) for tangency are (b = -16) and (b = 16).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;