Photo AI

Which expression is equal to \[ \int sin^2(2x)dx \]? (A) \( \frac{1}{2} \left( x - \frac{1}{4}sin(4x) \right) + c \) (B) \( \frac{1}{2} \left( x + \frac{1}{4}sin(4x) \right) + c \) (C) \( sin^3(2x) \) + c (D) \( -\frac{cos^2(2x)}{6} \) + c - HSC - SSCE Mathematics Extension 1 - Question 5 - 2016 - Paper 1

Question icon

Question 5

Which-expression-is-equal-to-\[-\int-sin^2(2x)dx-\]?---(A)-\(-\frac{1}{2}-\left(-x---\frac{1}{4}sin(4x)-\right)-+-c-\)---(B)-\(-\frac{1}{2}-\left(-x-+-\frac{1}{4}sin(4x)-\right)-+-c-\)---(C)-\(-sin^3(2x)-\)-+-c---(D)-\(--\frac{cos^2(2x)}{6}-\)-+-c-HSC-SSCE Mathematics Extension 1-Question 5-2016-Paper 1.png

Which expression is equal to \[ \int sin^2(2x)dx \]? (A) \( \frac{1}{2} \left( x - \frac{1}{4}sin(4x) \right) + c \) (B) \( \frac{1}{2} \left( x + \frac{1}{4}sin... show full transcript

Worked Solution & Example Answer:Which expression is equal to \[ \int sin^2(2x)dx \]? (A) \( \frac{1}{2} \left( x - \frac{1}{4}sin(4x) \right) + c \) (B) \( \frac{1}{2} \left( x + \frac{1}{4}sin(4x) \right) + c \) (C) \( sin^3(2x) \) + c (D) \( -\frac{cos^2(2x)}{6} \) + c - HSC - SSCE Mathematics Extension 1 - Question 5 - 2016 - Paper 1

Step 1

Determine the integral \( \int sin^2(2x)dx \)

96%

114 rated

Answer

To solve ( \int sin^2(2x)dx ), we can use the identity ( sin^2(u) = \frac{1 - cos(2u)}{2} ). Applying this identity, we can write: [ \int sin^2(2x)dx = \int \frac{1 - cos(4x)}{2}dx ] This can be split into two parts: [ \frac{1}{2} \int dx - \frac{1}{2} \int cos(4x)dx ]

Step 2

Evaluate the integrals

99%

104 rated

Answer

The first integral is straightforward: [ \frac{1}{2} \int dx = \frac{x}{2} + C_1 ] For the second integral, we have: [ -\frac{1}{2} \int cos(4x)dx = -\frac{1}{2} \frac{1}{4}sin(4x) + C_2 = -\frac{1}{8}sin(4x) + C_2 ] Combining these results, we get: [ \int sin^2(2x)dx = \frac{x}{2} - \frac{1}{8}sin(4x) + C ]

Step 3

Final expression

96%

101 rated

Answer

Thus, the final expression for the integral ( \int sin^2(2x)dx ) is: [ \frac{1}{2} \left( x - \frac{1}{4}sin(4x) \right) + c ] This corresponds to option (A), which is the correct answer.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;