Photo AI

The angle between two unit vectors $ extbf{a}$ and $ extbf{b}$ is $ heta$ and $| extbf{a} + extbf{b}| < 1$ - HSC - SSCE Mathematics Extension 1 - Question 8 - 2022 - Paper 1

Question icon

Question 8

The-angle-between-two-unit-vectors-$-extbf{a}$-and-$-extbf{b}$-is-$-heta$-and-$|-extbf{a}-+--extbf{b}|-<-1$-HSC-SSCE Mathematics Extension 1-Question 8-2022-Paper 1.png

The angle between two unit vectors $ extbf{a}$ and $ extbf{b}$ is $ heta$ and $| extbf{a} + extbf{b}| < 1$. Which of the following best describes the possible rang... show full transcript

Worked Solution & Example Answer:The angle between two unit vectors $ extbf{a}$ and $ extbf{b}$ is $ heta$ and $| extbf{a} + extbf{b}| < 1$ - HSC - SSCE Mathematics Extension 1 - Question 8 - 2022 - Paper 1

Step 1

Which of the following best describes the possible range of values of $ heta$?

96%

114 rated

Answer

To determine the angle heta heta between two unit vectors extbfa extbf{a} and extbfb extbf{b}, we can use the property of the dot product, which relates to the cosine of the angle:

extbfa+extbfb2=extbfa2+extbfb2+2extbfaextbfbcos(θ)| extbf{a} + extbf{b}|^2 = | extbf{a}|^2 + | extbf{b}|^2 + 2| extbf{a}|| extbf{b}|\cos(\theta)

Since extbfa extbf{a} and extbfb extbf{b} are unit vectors, extbfa=extbfb=1| extbf{a}| = | extbf{b}| = 1, simplifying the expression:

extbfa+extbfb2=1+1+2cos(θ)=2+2cos(θ)| extbf{a} + extbf{b}|^2 = 1 + 1 + 2\cos(\theta) = 2 + 2\cos(\theta)

Given that the condition states extbfa+extbfb<1| extbf{a} + extbf{b}| < 1, we have:

2+2cos(θ)<12 + 2\cos(\theta) < 1

This can be rearranged to:

2cos(θ)<1    cos(θ)<122\cos(\theta) < -1\implies \cos(\theta) < -\frac{1}{2}

The angles that satisfy this condition occur in the ranges:

  • Between rac{2\pi}{3} and rac{4\pi}{3} (in radians).

This specifically leads to:

2π3<θ<π\frac{2\pi}{3} < \theta < \pi

Thus, the correct answer that describes the possible range of values of heta heta is option D: 2π3<θ<π\frac{2\pi}{3} < \theta < \pi.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;