Photo AI

a) Find the inverse of the function $y = x^3 - 2$ - HSC - SSCE Mathematics Extension 1 - Question 11 - 2016 - Paper 1

Question icon

Question 11

a)-Find-the-inverse-of-the-function-$y-=-x^3---2$-HSC-SSCE Mathematics Extension 1-Question 11-2016-Paper 1.png

a) Find the inverse of the function $y = x^3 - 2$. b) Use the substitution $u = x - 4$ to find \( \int \sqrt{x - 4} \, dx \). c) Differentiate $3 \tan^{-1}(2x)$. ... show full transcript

Worked Solution & Example Answer:a) Find the inverse of the function $y = x^3 - 2$ - HSC - SSCE Mathematics Extension 1 - Question 11 - 2016 - Paper 1

Step 1

Find the inverse of the function $y = x^3 - 2$.

96%

114 rated

Answer

To find the inverse of the function, we start by swapping the variables xx and yy:

x=y32x = y^3 - 2

Next, we solve for yy:

y3=x+2y^3 = x + 2
y=x+23y = \sqrt[3]{x + 2}

So, the inverse function is:
f1(x)=x+23f^{-1}(x) = \sqrt[3]{x + 2}

Step 2

Use the substitution $u = x - 4$ to find \( \int \sqrt{x - 4} \, dx \).

99%

104 rated

Answer

Using the substitution u=x4u = x - 4, we differentiate to find ( du = dx ) or ( dx = du ).
Then rewrite the integral:

udu\int \sqrt{u} \, du

Integrating this gives:

23u32+C=23(x4)32+C\frac{2}{3} u^{\frac{3}{2}} + C = \frac{2}{3} (x - 4)^{\frac{3}{2}} + C

Step 3

Differentiate $3 \tan^{-1}(2x)$.

96%

101 rated

Answer

We apply the chain rule here. The derivative of tan1(u)\tan^{-1}(u) is ( \frac{1}{1 + u^2} \frac{du}{dx} ):

Let u=2xu = 2x, then:

dudx=2\frac{du}{dx} = 2

Thus:

ddx[3tan1(2x)]=311+(2x)2imes2=61+4x2\frac{d}{dx}[3 \tan^{-1}(2x)] = 3 \cdot \frac{1}{1 + (2x)^2} imes 2 = \frac{6}{1 + 4x^2}

Step 4

Evaluate \( \lim_{x \to 0} \frac{2\sin x \cos x}{3x} \).

98%

120 rated

Answer

Using the limit property of sine, we can simplify:

limx02sinxcosx3x=21imes13=23\lim_{x \to 0} \frac{2\sin x \cos x}{3x} = \frac{2 \cdot 1 imes 1}{3} = \frac{2}{3}

Step 5

Solve \( \frac{3}{2x + 5} - x > 0 \).

97%

117 rated

Answer

To solve this inequality, we consider the expression:

32x+5>x\frac{3}{2x + 5} > x

Cross-multiplying gives us:

3>x(2x+5)3 > x(2x + 5)

Rearranging leads to:

2x2+5x+3<02x^2 + 5x + 3 < 0

Finding the roots gives:

x=3,  x=12x = -3, \; x = -\frac{1}{2}

So the solution set is:

3<x<12-3 < x < -\frac{1}{2}

Step 6

Find the probability that she hits the bullseye with exactly one of her first three throws.

97%

121 rated

Answer

The probability of hitting the bullseye is ( p = \frac{2}{5} ) and missing it is ( q = 1 - p = \frac{3}{5} ).
Using the binomial probability formula:

P(X=k)=(nk)pkqnkP(X = k) = \binom{n}{k} p^k q^{n-k}

For exactly one hit out of three throws (where n=3n = 3, k=1k = 1):

P(X=1)=(31)(25)1(35)2=325925=54125P(X = 1) = \binom{3}{1} \left(\frac{2}{5}\right)^1 \left(\frac{3}{5}\right)^{2} = 3 \cdot \frac{2}{5} \cdot \frac{9}{25} = \frac{54}{125}

Step 7

Find the probability that she hits the bullseye with at least two of her first six throws.

96%

114 rated

Answer

Here we can use the complement rule. The probabilities for getting at least 2 hits is:

P(X2)=1P(X<2)=1(P(0)+P(1))P(X \geq 2) = 1 - P(X < 2) = 1 - (P(0) + P(1))

Calculating these values:

P(0)=(60)(25)0(35)6=72915625P(0) = \binom{6}{0} \left(\frac{2}{5}\right)^0 \left(\frac{3}{5}\right)^{6} = \frac{729}{15625}

P(1)=(61)(25)1(35)5=6252433125=291615625P(1) = \binom{6}{1} \left(\frac{2}{5}\right)^1 \left(\frac{3}{5}\right)^{5} = 6 \cdot \frac{2}{5} \cdot \frac{243}{3125} = \frac{2916}{15625}

Thus,

P(X2)=1(72915625+291615625)=1364515625=1198015625P(X \geq 2) = 1 - \left(\frac{729}{15625} + \frac{2916}{15625}\right) = 1 - \frac{3645}{15625} = \frac{11980}{15625}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;