Photo AI

It is given that $\log_8 = 1.893$, correct to 3 decimal places - HSC - SSCE Mathematics Extension 1 - Question 2 - 2017 - Paper 1

Question icon

Question 2

It-is-given-that-$\log_8-=-1.893$,-correct-to-3-decimal-places-HSC-SSCE Mathematics Extension 1-Question 2-2017-Paper 1.png

It is given that $\log_8 = 1.893$, correct to 3 decimal places. What is the value of $\log_4$, correct to 2 decimal places? A. 0.95 B. 1.26 C. 1.53 D. 2.84

Worked Solution & Example Answer:It is given that $\log_8 = 1.893$, correct to 3 decimal places - HSC - SSCE Mathematics Extension 1 - Question 2 - 2017 - Paper 1

Step 1

Calculate $\log_4$ using change of base

96%

114 rated

Answer

We know that:

log4=log8log4(8)\log_4 = \frac{\log_8}{\log_4(8)}

Firstly, we express log4(8)\log_4(8) as:

log4(8)=log4(23)=3log4(2)\log_4(8) = \log_4(2^3) = 3 \cdot \log_4(2)

Using the change of base formula:

log4(2)=log2(2)log2(4)=12\log_4(2) = \frac{\log_2(2)}{\log_2(4)} = \frac{1}{2}

Then:

log4(8)=312=32=1.5\log_4(8) = 3 \cdot \frac{1}{2} = \frac{3}{2} = 1.5

Now we can find log4\log_4:

log4=log8log4(8)=1.8931.5=1.262\log_4 = \frac{\log_8}{\log_4(8)} = \frac{1.893}{1.5} = 1.262

Rounded to two decimal places, this gives us:

log41.26\log_4 \approx 1.26

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;