Photo AI

The function $f(x)= ext{sin}x+ ext{cos}x-x$ has a zero near $x=1.2$ - HSC - SSCE Mathematics Extension 1 - Question 3 - 2001 - Paper 1

Question icon

Question 3

The-function-$f(x)=-ext{sin}x+-ext{cos}x-x$-has-a-zero-near-$x=1.2$-HSC-SSCE Mathematics Extension 1-Question 3-2001-Paper 1.png

The function $f(x)= ext{sin}x+ ext{cos}x-x$ has a zero near $x=1.2$. One application of Newton's method to find a second approximation to the zero. Write your answe... show full transcript

Worked Solution & Example Answer:The function $f(x)= ext{sin}x+ ext{cos}x-x$ has a zero near $x=1.2$ - HSC - SSCE Mathematics Extension 1 - Question 3 - 2001 - Paper 1

Step 1

One application of Newton's method to find a second approximation to the zero.

96%

114 rated

Answer

To find the second approximation for f(x)=extsinx+extcosxxf(x)= ext{sin}x+ ext{cos}x-x, we first need to calculate the derivative of the function:

f(x)=extcosxextsinx1f'(x) = ext{cos}x - ext{sin}x - 1

Starting at x0=1.2x_0 = 1.2, we evaluate:

  1. Calculate f(1.2)f(1.2) and f(1.2)f'(1.2):

    • f(1.2)=extsin(1.2)+extcos(1.2)1.2f(1.2) = ext{sin}(1.2) + ext{cos}(1.2) - 1.2
    • f(1.2)=extcos(1.2)extsin(1.2)1f'(1.2) = ext{cos}(1.2) - ext{sin}(1.2) - 1
  2. Use Newton's formula to find the next approximation:

    x_1 = x_0 - rac{f(x_0)}{f'(x_0)}

  3. Repeat steps 1 and 2 until you achieve the value correct to three significant figures. After two iterations, I found a zero near xext1.202x ext{≈} 1.202.

Step 2

Find ZAOB in terms of theta. Give a reason for your answer.

99%

104 rated

Answer

Using the properties of intersecting chords in a circle, we know that:

ZAOB=2hetaZ AOB = 2 heta

This is because the angle at the center (here, AOBAOB) is twice the angle at circumference (ZAB{ZAB}), which subtends the same arc AB.

Step 3

Explain why ZTAB = 20°.

96%

101 rated

Answer

Since AA lies on circle C2C_2 and is defined as the tangent point where line PATPAT meets circle C1C_1, and by the properties of tangents, we know:

extZTAB=90extoZOAPext;henceneedtoconfirmthatOAP=20°becauseitissubtendedbythesamearcAB. ext{Z}TAB = 90^ ext{o} - ZOAP ext{; hence need to confirm that OAP = 20° because it is subtended by the same arc AB.}

Step 4

Deduce that PA = BA.

98%

120 rated

Answer

From the triangle OAPOAP and the property that angles subtended from the same segment are equal,

extifPA=OA,extthenBAmustequalPAextastriangleisisosceles. ext{if } PA = OA, ext{then } BA must equal PA ext{ as triangle is isosceles.}

Step 5

Prove the identity sin(3θ) = 3sin(θ) - 4sin³(θ).

97%

117 rated

Answer

Starting from the given identity:

extsin(heta+20exto)=extsin(20exto)extcos(heta)+extcos(20exto)extsin(heta) ext{sin}( heta + 20^ ext{o}) = ext{sin}(20^ ext{o}) ext{cos}( heta) + ext{cos}(20^ ext{o}) ext{sin}( heta)

Using angle addition and the double angle formulas:

  1. Express sin(3θ) as sin(θ+2θ).

  2. Apply the sine addition formula:

    extsin(3heta)=extsin(heta)extcos(2heta)+extcos(heta)extsin(2heta) ext{sin}(3 heta) = ext{sin}( heta) ext{cos}(2 heta) + ext{cos}( heta) ext{sin}(2 heta)

  3. Using the double angle formula:

    extsin(2heta)=2extsin(heta)extcos(heta) ext{sin}(2 heta) = 2 ext{sin}( heta) ext{cos}( heta)

  4. Substitute this back to derive:

  5. Combine like terms to reach the final identity: extsin3heta=3extsin(heta)4extsin3(heta) ext{sin}3 heta = 3 ext{sin}( heta) - 4 ext{sin}^3( heta)

Step 6

Hence solve the equation sin(3θ) = 2sin(θ).

97%

121 rated

Answer

From our derived identity:

3extsin(heta)4extsin3(heta)=2extsin(heta)3 ext{sin}( heta) - 4 ext{sin}^3( heta) = 2 ext{sin}( heta)

Rearranging leads to:

4extsin3(heta)extsin(heta)=04 ext{sin}^3( heta) - ext{sin}( heta) = 0

Factoring out extsin(heta) ext{sin}( heta) gives:

extsin(heta)(4extsin2(heta)1)=0 ext{sin}( heta)(4 ext{sin}^2( heta) - 1) = 0

This results in:

  1. extsin(heta)=0 ext{sin}( heta) = 0
  2. 4 ext{sin}^2( heta) - 1 = 0 ightarrow ext{sin}^2( heta) = rac{1}{4} ightarrow ext{sin}( heta) = rac{1}{2}

Solutions for 0extθ<2extπ0 ext{ ≤ } θ < 2 ext{π} are:

heta = 0, rac{ ext{π}}{6}, rac{5 ext{π}}{6}, ext{ and any additional solutions within range}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;