Photo AI

Which sum is equal to $$\sum_{k=1}^{20} (2k + 1)?$$ (A) 1 + 2 + 3 + 4 + \ldots + 20 (B) 1 + 3 + 5 + 7 + \ldots + 41 (C) 3 + 4 + 5 + 6 + \ldots + 20 (D) 3 + 5 + 7 + \ldots + 41 - HSC - SSCE Mathematics Extension 1 - Question 1 - 2016 - Paper 1

Question icon

Question 1

Which-sum-is-equal-to--$$\sum_{k=1}^{20}-(2k-+-1)?$$-(A)-1-+-2-+-3-+-4-+-\ldots-+-20-(B)-1-+-3-+-5-+-7-+-\ldots-+-41-(C)-3-+-4-+-5-+-6-+-\ldots-+-20-(D)-3-+-5-+-7-+-\ldots-+-41-HSC-SSCE Mathematics Extension 1-Question 1-2016-Paper 1.png

Which sum is equal to $$\sum_{k=1}^{20} (2k + 1)?$$ (A) 1 + 2 + 3 + 4 + \ldots + 20 (B) 1 + 3 + 5 + 7 + \ldots + 41 (C) 3 + 4 + 5 + 6 + \ldots + 20 (D) 3 + 5 + 7 + ... show full transcript

Worked Solution & Example Answer:Which sum is equal to $$\sum_{k=1}^{20} (2k + 1)?$$ (A) 1 + 2 + 3 + 4 + \ldots + 20 (B) 1 + 3 + 5 + 7 + \ldots + 41 (C) 3 + 4 + 5 + 6 + \ldots + 20 (D) 3 + 5 + 7 + \ldots + 41 - HSC - SSCE Mathematics Extension 1 - Question 1 - 2016 - Paper 1

Step 1

Calculate the given sum

96%

114 rated

Answer

We start with the summation:

k=120(2k+1)\sum_{k=1}^{20} (2k + 1)

This can be simplified as follows:

k=120(2k+1)=k=1202k+k=1201\sum_{k=1}^{20} (2k + 1) = \sum_{k=1}^{20} 2k + \sum_{k=1}^{20} 1

Calculating each part:

  1. The sum of the first 20 integers:
    k=120k=20(20+1)2=210\sum_{k=1}^{20} k = \frac{20(20 + 1)}{2} = 210 Thus,
    k=1202k=2×210=420\sum_{k=1}^{20} 2k = 2 \times 210 = 420

  2. The sum of 20 ones:
    k=1201=20\sum_{k=1}^{20} 1 = 20

Combining both results, we have:

k=120(2k+1)=420+20=440\sum_{k=1}^{20} (2k + 1) = 420 + 20 = 440

Step 2

Evaluate each option

99%

104 rated

Answer

Now we compare this result with the options provided:

  • (A) 1 + 2 + 3 + 4 + ... + 20 = 210 (Not equal)
  • (B) 1 + 3 + 5 + 7 + ... + 41 = 441 (This is correct since it's the sum of the first 20 odd numbers)
  • (C) 3 + 4 + 5 + ... + 20 = 210 (Not equal)
  • (D) 3 + 5 + 7 + ... + 41 = 41 (Not equal)

Thus, the correct answer is (B).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;