Photo AI

Evaluate $$\lim_{x \to 0} \frac{\sin(\frac{x}{5})}{2x}.$$ Find $$\frac{d}{dx}\cos^{-1}(3x^2).$$ The line $AT$ is the tangent to the circle at $A$, and $BT$ is a secant meeting the circle at $B$ and $C$ - HSC - SSCE Mathematics Extension 1 - Question 2 - 2004 - Paper 1

Question icon

Question 2

Evaluate-$$\lim_{x-\to-0}-\frac{\sin(\frac{x}{5})}{2x}.$$---Find---$$\frac{d}{dx}\cos^{-1}(3x^2).$$----The-line-$AT$-is-the-tangent-to-the-circle-at-$A$,-and-$BT$-is-a-secant-meeting-the-circle-at-$B$-and-$C$-HSC-SSCE Mathematics Extension 1-Question 2-2004-Paper 1.png

Evaluate $$\lim_{x \to 0} \frac{\sin(\frac{x}{5})}{2x}.$$ Find $$\frac{d}{dx}\cos^{-1}(3x^2).$$ The line $AT$ is the tangent to the circle at $A$, and $BT$ is... show full transcript

Worked Solution & Example Answer:Evaluate $$\lim_{x \to 0} \frac{\sin(\frac{x}{5})}{2x}.$$ Find $$\frac{d}{dx}\cos^{-1}(3x^2).$$ The line $AT$ is the tangent to the circle at $A$, and $BT$ is a secant meeting the circle at $B$ and $C$ - HSC - SSCE Mathematics Extension 1 - Question 2 - 2004 - Paper 1

Step 1

Evaluate $$\lim_{x \to 0} \frac{\sin(\frac{x}{5})}{2x}$$

96%

114 rated

Answer

To solve this limit, we can use the fact that for small values of xx, ( \lim_{u \to 0} \frac{\sin u}{u} = 1 ).

Letting ( u = \frac{x}{5} ), we have:

limx0sin(x5)2x=limu0sinu25u=limu0sinuu110=110. \lim_{x \to 0} \frac{\sin(\frac{x}{5})}{2x} = \lim_{u \to 0} \frac{\sin u}{2 \cdot 5u} = \lim_{u \to 0} \frac{\sin u}{u} \cdot \frac{1}{10} = \frac{1}{10}.

Step 2

Find $$\frac{d}{dx}\cos^{-1}(3x^2)$$

99%

104 rated

Answer

Using the chain rule, we differentiate:

ddxcos1(u)=11u2dudx,where u=3x2.\frac{d}{dx}\cos^{-1}(u) = -\frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx}, \quad \text{where } u = 3x^2.

Calculating ( \frac{du}{dx} = 6x ), we substitute back:

ddxcos1(3x2)=6x1(3x2)2=6x19x4. \frac{d}{dx}\cos^{-1}(3x^2) = -\frac{6x}{\sqrt{1-(3x^2)^2}} = -\frac{6x}{\sqrt{1-9x^4}}.

Step 3

Given that $AT=12$, $BC=7$ and $CT=x$, find the value of $x$

96%

101 rated

Answer

From the geometry, we can apply the Pythagorean theorem:

AT2=AB2+BT2AT^2 = AB^2 + BT^2(which is also secant)

We have:

122=72+x2    144=49+x2    x2=95    x=959.746. 12^2 = 7^2 + x^2 \implies 144 = 49 + x^2 \implies x^2 = 95 \implies x = \sqrt{95} \approx 9.746.

Step 4

Write $8 \cos x + 6 \sin x$ in the form $A \cos(r - \alpha)$

98%

120 rated

Answer

To express (8 \cos x + 6 \sin x) in the form (A \cos(r - \alpha)):

We find:

A=82+62=64+36=100=10, A = \sqrt{8^2 + 6^2} = \sqrt{64 + 36} = \sqrt{100} = 10,

and using tanα=68=34\tan \alpha = \frac{6}{8} = \frac{3}{4}, we find ( \alpha = \tan^{-1}(\frac{3}{4})$.

Thus, it can be expressed as:

10cos(xtan1(34)). 10 \cos \left(x - \tan^{-1}\left(\frac{3}{4}\right)\right).

Step 5

Hence, or otherwise, solve the equation $8\cos x + 6 \sin x = 5$

97%

117 rated

Answer

Rearranging,

10cos(xtan1(34))=5    cos(xtan1(34))=12. 10 \cos\left(x - \tan^{-1}\left(\frac{3}{4}\right)\right) = 5 \implies \cos\left(x - \tan^{-1}\left(\frac{3}{4}\right)\right) = \frac{1}{2}.

Thus,

xtan1(34)=π3+2kπextorxtan1(34)=π3+2kπx - \tan^{-1}\left(\frac{3}{4}\right) = \frac{\pi}{3} + 2k\pi ext{ or } x - \tan^{-1}\left(\frac{3}{4}\right) = -\frac{\pi}{3} + 2k\pi for all integers kk.

Solving for xx, we find specific values within (0 \leq x \leq 2\pi$.

Step 6

In how many ways can this team be chosen?

97%

121 rated

Answer

The total number of ways to choose a team of 4 from 16 people (9 women + 7 men) is given by:

(164)=16!4!(164)!=1820. \binom{16}{4} = \frac{16!}{4!(16-4)!} = 1820.

Step 7

What is the probability that the team will consist of four women?

96%

114 rated

Answer

The number of ways to choose 4 women from 9 is:

(94)=126. \binom{9}{4} = 126.
The probability is then the ratio:

P=Ways to choose 4 womenTotal ways to choose 4=1261820=639100.069.P = \frac{\text{Ways to choose 4 women}}{\text{Total ways to choose 4}} = \frac{126}{1820} = \frac{63}{910} \approx 0.069.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;