Photo AI

a) Find the inverse of the function $y = x^3 - 2$ - HSC - SSCE Mathematics Extension 1 - Question 11 - 2016 - Paper 1

Question icon

Question 11

a)-Find-the-inverse-of-the-function-$y-=-x^3---2$-HSC-SSCE Mathematics Extension 1-Question 11-2016-Paper 1.png

a) Find the inverse of the function $y = x^3 - 2$. b) Use the substitution $u = x - 4$ to find $\int \sqrt{x - 4} \, dx$. c) Differentiate $3 \tan^{-1}(2x)$. d) E... show full transcript

Worked Solution & Example Answer:a) Find the inverse of the function $y = x^3 - 2$ - HSC - SSCE Mathematics Extension 1 - Question 11 - 2016 - Paper 1

Step 1

Find the inverse of the function $y = x^3 - 2$.

96%

114 rated

Answer

To find the inverse, we swap xx and yy:

  1. Begin with y=x32y = x^3 - 2.

  2. Interchange xx and yy: x=y32x = y^3 - 2.

  3. Solve for yy: y3=x+2y^3 = x + 2 y=x+23y = \sqrt[3]{x + 2}.

Thus, the inverse function is: f1(x)=x+23.f^{-1}(x) = \sqrt[3]{x + 2}.

Step 2

Use the substitution $u = x - 4$ to find $\int \sqrt{x - 4} \, dx$.

99%

104 rated

Answer

  1. Substitute: u=x4x=u+4dx=du.u = x - 4 \Rightarrow x = u + 4 \Rightarrow dx = du.

  2. The integral becomes: udu.\int \sqrt{u} \, du.

  3. Now, evaluate the integral: udu=23u3/2+C\int \sqrt{u} \, du = \frac{2}{3} u^{3/2} + C.

  4. Substitute back: =23(x4)3/2+C.= \frac{2}{3} (x - 4)^{3/2} + C.

Step 3

Differentiate $3 \tan^{-1}(2x)$.

96%

101 rated

Answer

Using the chain rule:

  1. Let f(x)=3tan1(2x)f(x) = 3 \tan^{-1}(2x).
  2. The derivative is: f(x)=311+(2x)22=61+4x2.f'(x) = 3 \cdot \frac{1}{1 + (2x)^2} \cdot 2 = \frac{6}{1 + 4x^2}.

Step 4

Evaluate $\lim_{x \to 0} \frac{2 \sin x \cos x}{3x}$.

98%

120 rated

Answer

  1. Simplify the limit: limx0sin(2x)3x\lim_{x \to 0} \frac{\sin(2x)}{3x} because 2sinxcosx=sin(2x)2 \sin x \cos x = \sin(2x).

  2. Use L'Hôpital's Rule since both the numerator and denominator approach 0: =limx02cos(2x)3=213=23.= \lim_{x \to 0} \frac{2 \cos(2x)}{3} = \frac{2 \cdot 1}{3} = \frac{2}{3}.

Step 5

Solve $\frac{3}{2x + 5} > 0$.

97%

117 rated

Answer

  1. The inequality holds when the denominator is positive: 2x+5>02x>5x>52.2x + 5 > 0 \Rightarrow 2x > -5 \Rightarrow x > -\frac{5}{2}.

Step 6

Find the probability that she hits the bullseye with exactly one of her first three throws.

97%

121 rated

Answer

  1. Let p=25p = \frac{2}{5}, the probability of hitting the bullseye.
  2. The probability of missing is: q=1p=35q = 1 - p = \frac{3}{5}.
  3. The probability of hitting exactly one bullseye in three throws (using binomial distribution): P(X=1)=(31)p1q2=3(25)1(35)2=325925=54125.P(X = 1) = \binom{3}{1} p^1 q^2 = 3 \cdot \left(\frac{2}{5}\right)^1 \cdot \left(\frac{3}{5}\right)^2 = 3 \cdot \frac{2}{5} \cdot \frac{9}{25} = \frac{54}{125}.

Step 7

Find the probability that she hits the bullseye with at least two of her first six throws.

96%

114 rated

Answer

  1. For at least two hits, calculate complements: P(X2)=1P(X=0)P(X=1).P(X \geq 2) = 1 - P(X = 0) - P(X = 1).
  2. Calculate:
    P(X=0)=(60)p0q6=(35)6=72915625.P(X = 0) = \binom{6}{0} p^0 q^6 = \left(\frac{3}{5}\right)^6 = \frac{729}{15625}.
    P(X=1)=(61)p1q5=625(35)5=6252433125=291615625.P(X = 1) = \binom{6}{1} p^1 q^5 = 6 \cdot \frac{2}{5} \cdot \left(\frac{3}{5}\right)^5 = 6 \cdot \frac{2}{5} \cdot \frac{243}{3125} = \frac{2916}{15625}.
  3. Thus: P(X2)=1(729+291615625)=1364515625=1198015625.P(X \geq 2) = 1 - \left(\frac{729 + 2916}{15625}\right) = 1 - \frac{3645}{15625} = \frac{11980}{15625}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;