Photo AI
Question 11
For the vectors \( \mathbf{u} = \mathbf{i} - \mathbf{j} \) and \( \mathbf{v} = 2\mathbf{i} + \mathbf{j} \), evaluate each of the following. (i) \( \mathbf{u} + 3\ma... show full transcript
Step 1
Answer
Given the vectors, we can perform the addition:
[ \mathbf{u} + 3\mathbf{v} = (\mathbf{i} - \mathbf{j}) + 3(2\mathbf{i} + \mathbf{j}) ]
Calculating this gives:
[ \mathbf{u} + 3\mathbf{v} = \mathbf{i} - \mathbf{j} + 6\mathbf{i} + 3\mathbf{j} = 7\mathbf{i} + 2\mathbf{j} ]
Step 2
Step 3
Answer
Using the substitution ( u = x^2 + 4 ), we have:
[ du = 2x , dx \quad \Rightarrow \quad dx = \frac{du}{2x} ]
Thus, the integral becomes:
[ \int \frac{x}{\sqrt{u}} \cdot \frac{1}{2x} , du = \frac{1}{2} \int u^{-1/2} , du ]
Integrating from the limits: when ( x = 0 ), ( u = 4 ) and when ( x = 1 ), ( u = 5 ).
Evaluating:
[ = \frac{1}{2} [2u^{1/2}]{4}^{5} = [u^{1/2}]{4}^{5} = \sqrt{5} - 2 ]
Step 4
Answer
Using the binomial expansion:
[ \left( 1 - \frac{x}{2} \right) ^8 = \sum_{k=0}^{8} \binom{8}{k} \left(-\frac{x}{2}\right)^k ]
For ( x^2 ):
[ \text{The coefficient is } \binom{8}{2} \left(-\frac{1}{2}\right)^2 = 28 \cdot \frac{1}{4} = 7 ]
For ( x^3 ):
[ \text{The coefficient is } \binom{8}{3} \left(-\frac{1}{2}\right)^3 = 56 \cdot \left(-\frac{1}{8}\right) = -7 ]
Step 5
Answer
To find when the vectors are perpendicular, we set:
[ \mathbf{u} \cdot \mathbf{v} = 0 ]
This gives:
[ \frac{a}{2} \cdot \frac{a - 7}{4a - 1} = 0 \quad \Rightarrow \quad a = -2 \text{ or } a = 7 ]
Step 6
Answer
To express in that form, we note:
[ R = \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{3 + 9} = \sqrt{12} = 2\sqrt{3} ]
And find ( \alpha ):
[ \tan(\alpha) = \frac{-3}{\sqrt{3}} = -\sqrt{3} \quad \Rightarrow \quad \alpha = -\frac{\pi}{3} ]
Thus, we have:
[ \sqrt{3} \sin(x) - 3 \cos(x) = 2\sqrt{3} \sin\left(x - \frac{\pi}{3}\right)]
Step 7
Answer
Rearranging gives:
[ \frac{x}{2 - x} - 5 \leq 0 \quad \Rightarrow \quad \frac{x - 5(2 - x)}{2 - x} \leq 0 ]
This simplifies to:
[ \frac{6x - 10}{2 - x} \leq 0 \quad \Rightarrow \text{Critical points are } x = 5 \text{ and } x = 2 ]
From the test intervals, we find the solution:
[ 2 < x \leq 5 ]
Report Improved Results
Recommend to friends
Students Supported
Questions answered