Photo AI

For the vectors $oldsymbol{u} = oldsymbol{i} - oldsymbol{j}$ and $oldsymbol{v} = 2oldsymbol{i} + oldsymbol{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Question icon

Question 11

For-the-vectors-$oldsymbol{u}-=-oldsymbol{i}---oldsymbol{j}$-and-$oldsymbol{v}-=-2oldsymbol{i}-+-oldsymbol{j}$,-evaluate-each-of-the-following-HSC-SSCE Mathematics Extension 1-Question 11-2022-Paper 1.png

For the vectors $oldsymbol{u} = oldsymbol{i} - oldsymbol{j}$ and $oldsymbol{v} = 2oldsymbol{i} + oldsymbol{j}$, evaluate each of the following. (i) $oldsymbo... show full transcript

Worked Solution & Example Answer:For the vectors $oldsymbol{u} = oldsymbol{i} - oldsymbol{j}$ and $oldsymbol{v} = 2oldsymbol{i} + oldsymbol{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Step 1

(i) $\boldsymbol{u} + 3\boldsymbol{v}$

96%

114 rated

Answer

First, substitute the values:

u+3v=(ij)+3(2i+j)\boldsymbol{u} + 3\boldsymbol{v} = (\boldsymbol{i} - \boldsymbol{j}) + 3(2\boldsymbol{i} + \boldsymbol{j})

Calculating the expression yields:

=ij+6i+3j= \boldsymbol{i} - \boldsymbol{j} + 6\boldsymbol{i} + 3\boldsymbol{j} =(1+6)i+(1+3)j= (1 + 6)\boldsymbol{i} + (-1 + 3)\boldsymbol{j} =7i+2j= 7\boldsymbol{i} + 2\boldsymbol{j}

Step 2

(ii) $\boldsymbol{u} \bullet \boldsymbol{v}$

99%

104 rated

Answer

To find the dot product, we compute:

uv=(ij)(2i+j)\boldsymbol{u} \bullet \boldsymbol{v} = (\boldsymbol{i} - \boldsymbol{j}) \bullet (2\boldsymbol{i} + \boldsymbol{j})

This expands to:

=12+(1)1=21=1= 1 \cdot 2 + (-1) \cdot 1 = 2 - 1 = 1

Step 3

(b) Find the exact value of $\int_0^1 \frac{\sqrt{x}}{\sqrt{x^2 + 4}} \, dx$

96%

101 rated

Answer

Using the substitution u=x2+4\boldsymbol{u} = x^2 + 4, we have:

du=2xdxdu = 2x \, dx dx=du2xdx = \frac{du}{2x}

Thus substituting yields:

xudu2x=121udu\int \frac{\sqrt{x}}{\sqrt{u}} \cdot \frac{du}{2x} = \frac{1}{2} \int \frac{1}{\sqrt{u}} \, du

Now, changing limits:

  • When x=0x = 0, u=4u = 4.
  • When x=1x = 1, u=5u = 5.

Calculation becomes:

=12[2u]45=12[2524]=52= \frac{1}{2} [2\sqrt{u}]_4^5 = \frac{1}{2} [2\sqrt{5} - 2\sqrt{4}] = \sqrt{5} - 2

Step 4

(c) Find the coefficients of $x^2$ and $x^3$ in the expansion of $(1 - \frac{x}{2})^8$

98%

120 rated

Answer

Using the binomial expansion:

(1x)n=k=0n(nk)(x)k(1 - x)^n = \sum_{k=0}^{n} \binom{n}{k} (-x)^k

For (1x2)8(1 - \frac{x}{2})^8, the coefficients are:

  • Coefficient of x2x^2: (\binom{8}{2} (-\frac{1}{2})^2 = 28 \cdot \frac{1}{4} = 7)
  • Coefficient of x3x^3: (\binom{8}{3} (-\frac{1}{2})^3 = 56 \cdot -\frac{1}{8} = -7)

Step 5

(d) The vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are perpendicular.

97%

117 rated

Answer

The condition for perpendicular vectors is: uv=0\boldsymbol{u} \bullet \boldsymbol{v} = 0 Substituting the vectors: (a22)(a74a1 1)=0\begin{pmatrix} \frac{a}{2} \\ 2 \end{pmatrix} \bullet \begin{pmatrix} \frac{a - 7}{4a - 1} \ 1 \end{pmatrix} = 0 This leads to: a2a74a1+21=0\frac{a}{2}\cdot \frac{a - 7}{4a - 1} + 2\cdot 1 = 0 Solving the equation gives:

= a^2 - 15a + 4 = 0$$ Using the quadratic formula: $$a = \frac{15 \pm \sqrt{15^2 - 4 \cdot 1 \cdot 4}}{2} = 2 \quad \text{or} \quad 14$$

Step 6

(e) Express $\sqrt{3}\sin(x) - 3\cos(x)$ in the form $R\sin(x + \alpha)$

97%

121 rated

Answer

To express in the required form, calculate RR and α\alpha:

First, find: R=(3)2+(3)2=3+9=12=23R = \sqrt{(\sqrt{3})^2 + (-3)^2} = \sqrt{3 + 9} = \sqrt{12} = 2\sqrt{3}

Now, find α\alpha: tan(α)=33α=π3\tan(\alpha) = \frac{-3}{\sqrt{3}} \Rightarrow \alpha = -\frac{\pi}{3} Therefore, we can write: Rsin(x+α)=23sin(xπ3) R\sin(x + \alpha) = 2\sqrt{3}\sin\left(x - \frac{\pi}{3}\right)

Step 7

(f) Solve $\frac{x}{2 - x} \leq 5$

96%

114 rated

Answer

To solve the inequality, we start by rearranging:

x5(2x)x \leq 5(2 - x)

Adding 5x5x to both sides: x+5x10x + 5x \leq 10 6x106x \leq 10 This simplifies to: x106=53x \leq \frac{10}{6} = \frac{5}{3} The domain also requires checking conditions: 2x>0x<22 - x > 0 \Rightarrow x < 2 Thus combining gives: x<2 and x53x < 2 \text{ and } x \leq \frac{5}{3} The solution set is: x<53x < \frac{5}{3}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;