Photo AI

(a) Factorise $8x^3 + 27$ - HSC - SSCE Mathematics Extension 1 - Question 1 - 2009 - Paper 1

Question icon

Question 1

(a)-Factorise-$8x^3-+-27$-HSC-SSCE Mathematics Extension 1-Question 1-2009-Paper 1.png

(a) Factorise $8x^3 + 27$. (b) Let $f(x) = \ln(x - 3)$. What is the domain of $f(x)$? (c) Find $\lim_{x \to 0} \frac{\sin 2x}{x}$. (d) Solve the inequality $\fra... show full transcript

Worked Solution & Example Answer:(a) Factorise $8x^3 + 27$ - HSC - SSCE Mathematics Extension 1 - Question 1 - 2009 - Paper 1

Step 1

Factorise $8x^3 + 27$

96%

114 rated

Answer

To factor 8x3+278x^3 + 27, we recognize that this is a sum of cubes, which can be factored using the formula:

a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)

Here, let a=2xa = 2x and b=3b = 3. Then,

8x3+27=(2x)3+33=(2x+3)((2x)2(2x)(3)+32)8x^3 + 27 = (2x)^3 + 3^3 = (2x + 3)((2x)^2 - (2x)(3) + 3^2)

Calculating the second factor:

(2x)2=4x2,(2x)(3)=6x,32=9(2x)^2 = 4x^2 \quad , \quad - (2x)(3) = -6x \quad , \quad 3^2 = 9

So, the factorization gives us:

8x3+27=(2x+3)(4x26x+9)8x^3 + 27 = (2x + 3)(4x^2 - 6x + 9)

Step 2

What is the domain of $f(x)$?

99%

104 rated

Answer

The function f(x)=ln(x3)f(x) = \ln(x - 3) is defined only when the argument of the logarithm is positive. Therefore, we require:

x3>0x - 3 > 0

This implies:

x>3x > 3

Thus, the domain of f(x)f(x) is:

(3,)(3, \infty)

Step 3

Find $\lim_{x \to 0} \frac{\sin 2x}{x}$

96%

101 rated

Answer

To evaluate the limit, we can use L'Hôpital's rule, as both the numerator and denominator approach 0 as x0x \to 0:

limx0sin2xx=limx0ddx(sin2x)÷ddx(x)=limx02cos2x1\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} \frac{d}{dx}(\sin 2x) \div \frac{d}{dx}(x) = \lim_{x \to 0} \frac{2 \cos 2x}{1}

Evaluating this limit gives:

2cos(0)=21=22 \cos(0) = 2 \cdot 1 = 2

Step 4

Solve the inequality $\frac{x + 3}{2x} > 1$

98%

120 rated

Answer

First, we rewrite the inequality:

x+32x1>0\frac{x + 3}{2x} - 1 > 0

This simplifies to:

x+32x2x>0    3x2x>0\frac{x + 3 - 2x}{2x} > 0 \implies \frac{3 - x}{2x} > 0

To solve this, we identify critical points by setting the numerator and denominator to zero:

  • 3x=0x=33 - x = 0 \Rightarrow x = 3
  • 2x=0x=02x = 0 \Rightarrow x = 0

We test the intervals determined by these points:

  • For x<0x < 0: the fraction is negative.
  • For 0<x<30 < x < 3: the fraction is positive.
  • For x>3x > 3: the fraction is negative.

Thus, the solution set is:

(0,3)(0, 3)

Step 5

Differentiate $x \cos^2 x$

97%

117 rated

Answer

To differentiate the function using the product rule:

  1. Let u=xu = x and v=cos2xv = \cos^2 x. Then,

    ddx(uv)=udvdx+vdudx\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}

  2. First, we need dudx=1\frac{du}{dx} = 1 and for v=cos2xv = \cos^2 x, we use the chain rule: dvdx=2cosx(sinx)=2cosxsinx\frac{dv}{dx} = 2 \cos x (-\sin x) = -2 \cos x \sin x

  3. Now substituting back: ddx(xcos2x)=x(2cosxsinx)+cos2x(1)=2xcosxsinx+cos2x\frac{d}{dx}(x \cos^2 x) = x(-2 \cos x \sin x) + \cos^2 x(1) = -2x \cos x \sin x + \cos^2 x

Step 6

Using the substitution $u = x^3 + 1$, or otherwise, evaluate $\int_0^{2} e^{u^2 + 1} \, dx$

97%

121 rated

Answer

Using the substitution u=x3+1u = x^3 + 1, then:

du=3x2dxdx=du3x2du = 3x^2 \, dx \Rightarrow dx = \frac{du}{3x^2}

Changing the limits:

  • When x=0x = 0, u=1u = 1.
  • When x=2x = 2, u=9u = 9.

Now, we express xx in terms of uu:

x=(u1)1/3dx=du3(u1)2/3x = (u - 1)^{1/3} \Rightarrow dx = \frac{du}{3(u - 1)^{2/3}}

Thus, we rewrite the integral as:

19eu2+1du3(u1)2/3\int_1^{9} e^{u^2 + 1} \frac{du}{3(u - 1)^{2/3}}

This integral can be evaluated further depending on techniques, but it may not have a simple closed form.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;