Get detailed information about SimpleStudy's offerings for schools.
We can give expert advice on our plans and what will be the best option for your school.
Photo AI
Question 1
Given that $$ar{OP} = \begin{pmatrix}-3 \\ 1\end{pmatrix}$$ and $$\bar{OQ} = \begin{pmatrix}2 \\ 5\end{pmatrix}$$, what is $$\bar{PQ}$$?
Step 1
96%
114 rated
Only available for registered users.
Sign up now to view full answer, or log in if you already have an account!
Answer
To find the vector PQˉ\bar{PQ}PQˉ, we use the formula:
PQˉ=OQˉ−OPˉ\bar{PQ} = \bar{OQ} - \bar{OP}PQˉ=OQˉ−OPˉ.\
Substituting the values, we calculate:
PQˉ=(25)−(−31)\bar{PQ} = \begin{pmatrix}2 \\ 5\end{pmatrix} - \begin{pmatrix}-3 \\ 1\end{pmatrix}PQˉ=(25)−(−31)
Now, we perform the subtraction:
PQˉ=(2−(−3)5−1)=(2+35−1)=(54).\bar{PQ} = \begin{pmatrix}2 - (-3) \\ 5 - 1\end{pmatrix} = \begin{pmatrix}2 + 3 \\ 5 - 1\end{pmatrix} = \begin{pmatrix}5 \\ 4\end{pmatrix}.PQˉ=(2−(−3)5−1)=(2+35−1)=(54).
Thus, the vector PQˉ\bar{PQ}PQˉ is (54)\begin{pmatrix}5 \\ 4\end{pmatrix}(54).
Report Improved Results
Recommend to friends
Students Supported
Questions answered