Photo AI

For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Question icon

Question 11

For-the-vectors-$\mathbf{u}-=-\mathbf{i}---\mathbf{j}$-and-$\mathbf{v}-=-2\mathbf{i}-+-\mathbf{j}$,-evaluate-each-of-the-following-HSC-SSCE Mathematics Extension 1-Question 11-2022-Paper 1.png

For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following. (i) $\mathbf{u} + 3\mathbf{v}$ ... show full transcript

Worked Solution & Example Answer:For the vectors $\mathbf{u} = \mathbf{i} - \mathbf{j}$ and $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$, evaluate each of the following - HSC - SSCE Mathematics Extension 1 - Question 11 - 2022 - Paper 1

Step 1

(i) $\mathbf{u} + 3\mathbf{v}$

96%

114 rated

Answer

To find u+3v\mathbf{u} + 3\mathbf{v}, we first calculate:

u+3v=(ij)+3(2i+j)\mathbf{u} + 3\mathbf{v} = (\mathbf{i} - \mathbf{j}) + 3(2\mathbf{i} + \mathbf{j})

Expanding this gives:

=ij+6i+3j= \mathbf{i} - \mathbf{j} + 6\mathbf{i} + 3\mathbf{j}

Combining like terms results in:

=(1+6)i+(1+3)j=7i+2j.= (1 + 6)\mathbf{i} + (-1 + 3)\mathbf{j} = 7\mathbf{i} + 2\mathbf{j}.

Step 2

(ii) $\mathbf{u} \cdot \mathbf{v}$

99%

104 rated

Answer

To compute the dot product uv\mathbf{u} \cdot \mathbf{v}:

uv=(ij)(2i+j)\mathbf{u} \cdot \mathbf{v} = (\mathbf{i} - \mathbf{j}) \cdot (2\mathbf{i} + \mathbf{j})

This expands to:

=12+(1)1=21=1.= 1\cdot2 + (-1)\cdot1 = 2 - 1 = 1.

Step 3

Find the exact value of $\int_{0}^{1} \frac{x}{\sqrt{x^2 + 4}} \; dx$

96%

101 rated

Answer

Using the substitution u=x2+4u = x^2 + 4, we have:

du=2x  dx    dx=du2x.du = 2x \; dx \implies dx = \frac{du}{2x}.

When x=0x = 0, u=4u = 4; and when x=1x = 1, u=5u = 5.

This leads to:

45xudu2x=12451u  du\int_{4}^{5} \frac{x}{\sqrt{u}} \cdot \frac{du}{2x} = \frac{1}{2} \int_{4}^{5} \frac{1}{\sqrt{u}} \; du

Calculating the integral gives:

=12[2u]45=12(2524)=52.= \frac{1}{2} \left[2\sqrt{u}\right]_{4}^{5} = \frac{1}{2} \left( 2\sqrt{5} - 2\sqrt{4} \right) = \sqrt{5} - 2.

Step 4

Find the coefficients of $x^2$ and $x^3$ in the expansion of $\left( 1 - \frac{x}{2} \right)^{8}$

98%

120 rated

Answer

Using the binomial expansion, we know:

(1x2)n=k=0n(nk)(x2)k.\left( 1 - \frac{x}{2} \right)^{n} = \sum_{k=0}^{n} \binom{n}{k}\left(-\frac{x}{2}\right)^{k}.

To find the coefficient of x2x^2:

(82)(12)2=2814=7.\binom{8}{2}\left(-\frac{1}{2}\right)^{2} = 28 \cdot \frac{1}{4} = 7.

For the coefficient of x3x^3:

(83)(12)3=56(18)=7.\binom{8}{3}\left(-\frac{1}{2}\right)^{3} = 56 \cdot \left(-\frac{1}{8}\right) = -7.

Step 5

The vectors $\mathbf{u} = \begin{pmatrix} \frac{a}{2} \\ \frac{a - 7}{4a - 1} \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} \frac{a - 7}{4a - 1} \\ \frac{a}{2} \end{pmatrix}$ are perpendicular.

97%

117 rated

Answer

The vectors are perpendicular if:

uv=0.\mathbf{u} \cdot \mathbf{v} = 0.

Thus:

(a2)(a74a1)+(a74a1)(a2)=0.(\frac{a}{2})(\frac{a - 7}{4a - 1}) + (\frac{a - 7}{4a - 1})(\frac{a}{2}) = 0.

This simplifies to:

a(a7)=0a=0 or a=7.a(a - 7) = 0 \Rightarrow a = 0 \text{ or } a = 7.

Step 6

Express $\sqrt{3}\sin(x) - 3\cos(x)$ in the form $R\sin(x + \alpha)$

97%

121 rated

Answer

To express this in the required form:

Let R=a2+b2R = \sqrt{a^2 + b^2} where a=3a = -3 and b=3b = \sqrt{3}.

Calculating:

R=(3)2+(3)2=9+3=12=23.R = \sqrt{(-3)^2 + (\sqrt{3})^2} = \sqrt{9 + 3} = \sqrt{12} = 2\sqrt{3}.

Finding α\alpha using:

tan(α)=ba=33.\tan(\alpha) = \frac{b}{a} = \frac{\sqrt{3}}{-3}.

Thus, we determine:

α=tan1(33),\alpha = \tan^{-1}\left(-\frac{\sqrt{3}}{3}\right), which suggests α=5π6\alpha = \frac{5\pi}{6}.

Therefore, the expression is:

3sin(x)3cos(x)=23sin(x+5π6).\sqrt{3}\sin(x) - 3\cos(x) = 2\sqrt{3}\sin\left(x + \frac{5\pi}{6}\right).

Step 7

Solve $\frac{x}{2 - x} \geq 5$

96%

114 rated

Answer

To solve this, first rearrange:

x5(2x)x+5x106x10x53.x \geq 5(2 - x) \\ x + 5x \geq 10 \\ 6x \geq 10 \\ x \geq \frac{5}{3}.

Next, we consider the behavior of x2x\frac{x}{2 - x}: It is defined for x<2x < 2. Thus, the solution set is:

x[53,2).x \in \left[\frac{5}{3}, 2\right).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;