Photo AI

The projection of the vector \( \begin{pmatrix} 6 \\ 7 \end{pmatrix} \) onto the line \( y = 2x \) is \( \begin{pmatrix} 4 \\ 8 \end{pmatrix} \) - HSC - SSCE Mathematics Extension 1 - Question 9 - 2020 - Paper 1

Question icon

Question 9

The-projection-of-the-vector-\(-\begin{pmatrix}-6-\\-7-\end{pmatrix}-\)-onto-the-line-\(-y-=-2x-\)-is-\(-\begin{pmatrix}-4-\\-8-\end{pmatrix}-\)-HSC-SSCE Mathematics Extension 1-Question 9-2020-Paper 1.png

The projection of the vector \( \begin{pmatrix} 6 \\ 7 \end{pmatrix} \) onto the line \( y = 2x \) is \( \begin{pmatrix} 4 \\ 8 \end{pmatrix} \). The point \( (6, 7... show full transcript

Worked Solution & Example Answer:The projection of the vector \( \begin{pmatrix} 6 \\ 7 \end{pmatrix} \) onto the line \( y = 2x \) is \( \begin{pmatrix} 4 \\ 8 \end{pmatrix} \) - HSC - SSCE Mathematics Extension 1 - Question 9 - 2020 - Paper 1

Step 1

The projection of the vector onto the line

96%

114 rated

Answer

To find the projection of the vector ( \mathbf{v} = \begin{pmatrix} 6 \ 7 \end{pmatrix} ) onto the line ( y = 2x ), we first write the direction vector of the line. The slope is 2, hence the direction vector ( \mathbf{d} = \begin{pmatrix} 1 \ 2 \end{pmatrix} ).

The projection formula is given by:

projdv=vdddd\text{proj}_{\mathbf{d}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{d}}{\mathbf{d} \cdot \mathbf{d}} \mathbf{d}

Calculating ( \mathbf{v} \cdot \mathbf{d} ): ( (6)(1) + (7)(2) = 6 + 14 = 20 )

Calculating ( \mathbf{d} \cdot \mathbf{d} ): ( (1)(1) + (2)(2) = 1 + 4 = 5 )

Thus, the projection is:

projdv=205(12)=4(12)=(48)\text{proj}_{\mathbf{d}} \mathbf{v} = \frac{20}{5} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}

Step 2

Reflecting the point in the line

99%

104 rated

Answer

We need to reflect the point ( (6, 7) ) across the line ( y = 2x ). The formula for reflection across a line ( Ax + By + C = 0 ) is:

(xy)=(xy)2Ax+By+CA2+B2(AB)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - 2 \frac{Ax + By + C}{A^2 + B^2} \begin{pmatrix} A \\ B \end{pmatrix}

For the line ( y - 2x = 0 ), we have ( A = -2, B = 1, C = 0 ).

First, we compute: ( Ax + By + C = -2(6) + (7) + 0 = -12 + 7 = -5 )

Next, calculate ( A^2 + B^2 ):
( (-2)^2 + (1)^2 = 4 + 1 = 5 )

Now we can substitute into the reflection formula:

(xy)=(67)255(21)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \end{pmatrix} - 2 \frac{-5}{5} \begin{pmatrix} -2 \\ 1 \end{pmatrix}

This results in: (xy)=(67)+2(21)=(647+2)=(29)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \end{pmatrix} + 2 \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 - 4 \\ 7 + 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 9 \end{pmatrix}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;