Photo AI
Question 1
Given that \(ar{OP} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}\) and \(ar{OQ} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\), what is \(ar{PQ}\?
Step 1
Answer
To find ( \bar{PQ} ), we can use the formula:
[ \bar{PQ} = \bar{OQ} - \bar{OP} ]
Substituting the given values:
[ \bar{PQ} = \begin{pmatrix} 2 \ 5 \end{pmatrix} - \begin{pmatrix} -3 \ 1 \end{pmatrix} ]
Performing the subtraction:
[ \bar{PQ} = \begin{pmatrix} 2 - (-3) \ 5 - 1 \end{pmatrix} = \begin{pmatrix} 2 + 3 \ 5 - 1 \end{pmatrix} = \begin{pmatrix} 5 \ 4 \end{pmatrix} ]
Thus, the answer is ( \bar{PQ} = \begin{pmatrix} 5 \ 4 \end{pmatrix} ), corresponding to option C.
Report Improved Results
Recommend to friends
Students Supported
Questions answered