Photo AI

Given that \(ar{OP} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}\) and \(ar{OQ} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\), what is \(ar{PQ}\? - HSC - SSCE Mathematics Extension 1 - Question 1 - 2021 - Paper 1

Question icon

Question 1

Given-that--\(ar{OP}-=-\begin{pmatrix}--3-\\-1-\end{pmatrix}\)-and--\(ar{OQ}-=-\begin{pmatrix}-2-\\-5-\end{pmatrix}\),-what-is-\(ar{PQ}\?-HSC-SSCE Mathematics Extension 1-Question 1-2021-Paper 1.png

Given that \(ar{OP} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}\) and \(ar{OQ} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\), what is \(ar{PQ}\?

Worked Solution & Example Answer:Given that \(ar{OP} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}\) and \(ar{OQ} = \begin{pmatrix} 2 \\ 5 \end{pmatrix}\), what is \(ar{PQ}\? - HSC - SSCE Mathematics Extension 1 - Question 1 - 2021 - Paper 1

Step 1

Calculate \( \bar{PQ} \)

96%

114 rated

Answer

To find ( \bar{PQ} ), we can use the formula:

[ \bar{PQ} = \bar{OQ} - \bar{OP} ]

Substituting the given values:

[ \bar{PQ} = \begin{pmatrix} 2 \ 5 \end{pmatrix} - \begin{pmatrix} -3 \ 1 \end{pmatrix} ]

Performing the subtraction:

[ \bar{PQ} = \begin{pmatrix} 2 - (-3) \ 5 - 1 \end{pmatrix} = \begin{pmatrix} 2 + 3 \ 5 - 1 \end{pmatrix} = \begin{pmatrix} 5 \ 4 \end{pmatrix} ]

Thus, the answer is ( \bar{PQ} = \begin{pmatrix} 5 \ 4 \end{pmatrix} ), corresponding to option C.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;