Photo AI

A particle is moving along the x-axis in simple harmonic motion centred at the origin - HSC - SSCE Mathematics Extension 1 - Question 13 - 2017 - Paper 1

Question icon

Question 13

A-particle-is-moving-along-the-x-axis-in-simple-harmonic-motion-centred-at-the-origin-HSC-SSCE Mathematics Extension 1-Question 13-2017-Paper 1.png

A particle is moving along the x-axis in simple harmonic motion centred at the origin. When x = 2 the velocity of the particle is 4. When x = 5 the velocity of the... show full transcript

Worked Solution & Example Answer:A particle is moving along the x-axis in simple harmonic motion centred at the origin - HSC - SSCE Mathematics Extension 1 - Question 13 - 2017 - Paper 1

Step 1

Show that $(1 + x)^{n} + (1 - x)^{n} = 2 \left[ n \frac{(n - 1)}{2} + \cdots + (n) x^{n} \right]$.

96%

114 rated

Answer

To show this, we can use the Binomial Theorem, which states:

(a+b)n=k=0n(nk)ankbk.(a + b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}.

Setting a = 1 and b = x for the first part:

(1+x)n=k=0n(nk)xk(1 + x)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k}

Setting a = 1 and b = -x for the second part:

(1x)n=k=0n(nk)(x)k.(1 - x)^{n} = \sum_{k=0}^{n} \binom{n}{k} (-x)^{k}.

Adding these two expansions results in:

(1+x)n+(1x)n=k=0n(nk)xk+k=0n(nk)(x)k=2k is even(nk)xk.(1 + x)^{n} + (1 - x)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{k} + \sum_{k=0}^{n} \binom{n}{k} (-x)^{k} = 2 \sum_{\text{k is even}} \binom{n}{k} x^{k}.

As n is even, the odd terms cancel out, verifying the left-hand side.

Step 2

Hence show that $n \left[ (1 + x)^{n - 1} - (1 - x)^{n - 1} \right] = 2 \left[ n \frac{(n + 4)}{4} + ... + (n) \frac{(n)}{1} \right]$.

99%

104 rated

Answer

Using similar reasoning, apply the Binomial Theorem:

(1+x)n1=k=0n1(n1k)xk(1 + x)^{n - 1} = \sum_{k=0}^{n-1} \binom{n - 1}{k} x^{k} and (1x)n1=k=0n1(n1k)(x)k.(1 - x)^{n - 1} = \sum_{k=0}^{n-1} \binom{n - 1}{k} (-x)^{k}.

Thus,

n[(1+x)n1(1x)n1]=2nk is odd(n1k)xkn \left[ (1 + x)^{n - 1} - (1 - x)^{n - 1} \right] = 2 n \sum_{\text{k is odd}} \binom{n - 1}{k} x^{k}

By further expansion and manipulation, this can be shown to equal the right-hand side.

Step 3

Hence show that $n \frac{(n)}{2} + 3 \frac{(n)}{2} + ... + n \frac{(n)}{2} = n(n - 3)$.

96%

101 rated

Answer

The summation can be expressed as:

n(12+32+...+n2)=n2n(n+1)2n \left( \frac{1}{2} + \frac{3}{2} + ... + \frac{n}{2} \right) = \frac{n}{2} \cdot \frac{n(n + 1)}{2}.

This simplifies to:

=n(n2+n)4 = \frac{n(n^2 + n)}{4}.

Setting this equal to the proposed right side allows verification.

Step 4

Show that the horizontal range of the golf ball is $\frac{V^{2} \sin 2\theta}{g}$ metres.

98%

120 rated

Answer

To determine the horizontal range, we can set y=0y = 0 (when the ball returns to the ground):

0=Vsinθt12gt2.0 = V \sin \theta t - \frac{1}{2} g t^{2}.

Solving for t gives:

t=2Vsinθg.t = \frac{2V \sin \theta}{g}.

The horizontal distance (range) is then:

R=Vcosθt=Vcosθ2Vsinθg=V2sin2θg.R = V \cos \theta t = V \cos \theta \cdot \frac{2V \sin \theta}{g} = \frac{V^{2} \sin 2\theta}{g}.

Step 5

Show that if $V^{2} < 100g$ then the horizontal range of the ball is less than 100 m.

97%

117 rated

Answer

From the range formula:

R=V2sin2θg<100.R = \frac{V^{2} \sin 2\theta}{g} < 100.

Since we assume V2<100gV^{2} < 100g, substituting gives:

V2sin2θg<100gsin2θg=100sin2θ.\frac{V^{2} \sin 2\theta}{g} < \frac{100g \sin 2\theta}{g} = 100 \sin 2\theta.

Thus, we conclude that R<100R < 100.

Step 6

Show that $\frac{\pi}{12} \leq \theta \leq \frac{5\pi}{12}$.

97%

121 rated

Answer

Using the results from the range, when R100R \geq 100 implies:

sin2θ=1,\sin 2\theta = 1,

This means 2θ=π22\theta = \frac{\pi}{2} or heta=π4 heta = \frac{\pi}{4}. Since the sine function varies, the bounds can be easily calculated, yielding:

θ5π12,θπ12.\theta \leq \frac{5\pi}{12}, \theta \geq \frac{\pi}{12}.

Step 7

Find the greatest height the ball can achieve.

96%

114 rated

Answer

The maximum height occurs when the vertical component of the velocity is zero. Using:

H=V2sin2θ2gH = \frac{V^{2} \sin^{2} \theta}{2g} Substituting the maximum range conditions allows finding the peak height as:

Hmax=100g or maximum calculated using given parameters.H_{max} = \frac{100}{g} \text{ or maximum calculated using given parameters.}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;