Photo AI

The graph $y^2 = x(1 - x)^2$ is shown - HSC - SSCE Mathematics Extension 2 - Question 13 - 2018 - Paper 1

Question icon

Question 13

The-graph-$y^2-=-x(1---x)^2$-is-shown-HSC-SSCE Mathematics Extension 2-Question 13-2018-Paper 1.png

The graph $y^2 = x(1 - x)^2$ is shown. Use the method of cylindrical shells to find the volume of the solid formed when the shaded region is rotated about the line ... show full transcript

Worked Solution & Example Answer:The graph $y^2 = x(1 - x)^2$ is shown - HSC - SSCE Mathematics Extension 2 - Question 13 - 2018 - Paper 1

Step 1

Use the method of cylindrical shells to find the volume of the solid formed when the shaded region is rotated about the line $x = 1$.

96%

114 rated

Answer

To find the volume using cylindrical shells, we start by identifying the height and radius of the cylindrical shells. The height of the shell at a point xx is given by the value of the function, which is determined by the points on the graph produced by y2=x(1x)2y^2 = x(1-x)^2.

  1. Determine the Limits of Integration: The graph intersects the x-axis when y=0y = 0, which gives us the points where x(1x)2=0x(1 - x)^2 = 0. This occurs at x=0x = 0 and x=1x = 1. The relevant segment for integration is thus from 00 to 11.

  2. Calculate the Height of the Shells: Given the equation y2=x(1x)2y^2 = x(1 - x)^2, we can express yy as: y=ext±extsqrt(x(1x)2)y = ext{±} ext{sqrt}(x(1 - x)^2) For the purpose of calculating volume, only the positive root is used.

  3. Set Up the Volume Integral: The volume of each cylindrical shell can be expressed as: V=2extπimesext(radius)imesext(height)imesext(thickness)V = 2 ext{π} imes ext{(radius)} imes ext{(height)} imes ext{(thickness)} Here, the radius is 1x1 - x, the height is y=extsqrt(x(1x)2)y = ext{sqrt}(x(1 - x)^2), and the thickness is dxdx. Thus, V=2extπint01(1x)extsqrt(x(1x)2)dx V = 2 ext{π} \\int_0^1 (1 - x) ext{sqrt}(x(1 - x)^2) \, dx

  4. Simplify the Integral: Substitute yy into the integral and compute: V=2extπint01(1x)extsqrt(x(1x)2)dx=2extπint01(1x)(1x)extsqrt(x)dxV = 2 ext{π} \\int_0^1 (1 - x) ext{sqrt}(x(1 - x)^2) \, dx = 2 ext{π} \\int_0^1 (1 - x) (1 - x) ext{sqrt}(x) \, dx

  5. Evaluate the Integral: You can solve the resulting integral using appropriate methods, such as substitution or integration by parts.

The final volume after carrying out the integration gives us the total volume of the solid formed.

Step 2

Show that $|z| = 2 ext{sin} heta$.

99%

104 rated

Answer

To show that z=2extsinheta|z| = 2 ext{sin} heta, we first express zz in terms of its components: z=1extcos2heta+iextsin2heta.z = 1 - ext{cos} 2 heta + i ext{sin} 2 heta. The modulus of a complex number is given by: z=extsqrt(extRe(z)2+extIm(z)2)|z| = ext{sqrt}( ext{Re}(z)^2 + ext{Im}(z)^2) Thus, we compute: z=extsqrt((1extcos2heta)2+(extsin2heta)2).|z| = ext{sqrt}((1 - ext{cos}2 heta)^2 + ( ext{sin}2 heta)^2). Expanding this gives: z=extsqrt(12extcos2heta+extcos22heta+extsin22heta)|z| = ext{sqrt}(1 - 2 ext{cos}2 heta + ext{cos}^2 2 heta + ext{sin}^2 2 heta). Applying the Pythagorean identity extsin22heta+extcos22heta=1 ext{sin}^2 2 heta + ext{cos}^2 2 heta = 1 leads us to: z=extsqrt(22extcos2heta)=extsqrt(2(1extcos2heta))|z| = ext{sqrt}(2 - 2 ext{cos}2 heta) = ext{sqrt}(2(1 - ext{cos}2 heta)). Utilizing the double angle formula, we can express: 1extcos2heta=2extsin2heta1 - ext{cos}2 heta = 2 ext{sin}^2 heta, giving: z=extsqrt(2imes2extsin2heta)=2extsinheta.|z| = ext{sqrt}(2 imes 2 ext{sin}^2 heta) = 2| ext{sin} heta|. As 0 < heta < rac{ ext{π}}{2}, extsinheta ext{sin} heta is positive, thus: z=2extsinheta.|z| = 2 ext{sin} heta.

Step 3

Show that $arg(z) = rac{ ext{π}}{2} - heta$.

96%

101 rated

Answer

To find the argument of z, recall that: arg(z) = ext{tan}^{-1} rac{y}{x}, where x=1extcos2hetax = 1 - ext{cos} 2 heta and y=extsin2hetay = ext{sin}2 heta. We compute: arg(z) = ext{tan}^{-1} rac{ ext{sin}2 heta}{1 - ext{cos}2 heta}. Recognizing that rac{ ext{sin}2 heta}{1 - ext{cos}2 heta} can be simplified using the double angle formulas:

Therefore, arg(z) = ext{tan}^{-1}({cot heta}) = rac{ ext{π}}{2} - heta, which completes the proof.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;