Photo AI

The point $P(a \, ext{cos} \, heta, b \, ext{sin} \, heta)$, where $0 < heta < \frac{\pi}{2}$, lies on the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), where $a > b$ - HSC - SSCE Mathematics Extension 2 - Question 15 - 2018 - Paper 1

Question icon

Question 15

The-point-$P(a-\,--ext{cos}-\,--heta,-b-\,--ext{sin}-\,--heta)$,-where-$0-<--heta-<-\frac{\pi}{2}$,-lies-on-the-ellipse-\(-\frac{x^2}{a^2}-+-\frac{y^2}{b^2}-=-1-\),-where-$a->-b$-HSC-SSCE Mathematics Extension 2-Question 15-2018-Paper 1.png

The point $P(a \, ext{cos} \, heta, b \, ext{sin} \, heta)$, where $0 < heta < \frac{\pi}{2}$, lies on the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), ... show full transcript

Worked Solution & Example Answer:The point $P(a \, ext{cos} \, heta, b \, ext{sin} \, heta)$, where $0 < heta < \frac{\pi}{2}$, lies on the ellipse \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \), where $a > b$ - HSC - SSCE Mathematics Extension 2 - Question 15 - 2018 - Paper 1

Step 1

Show that $Q$ has coordinates $(-a \sin \theta, b \cos \theta)$

96%

114 rated

Answer

To find the coordinates of point QQ, we note that it is vertically below point BB. Since BB is on the auxiliary circle, its coordinates can be expressed in terms of heta heta:

Let point BB have coordinates (asinθ,bcosθ)(a \sin \theta, b \cos \theta). The y-coordinate of QQ must match the y-coordinate of point BB but with a negative x-coordinate reflecting its position.

Thus, the coordinates of QQ can be derived as follows:

  • The x-coordinate is therefore asinθ-a\sin \theta.
  • The y-coordinate also corresponds to the maximum height, which is bcosθb\cos \theta.

Hence, we conclude that QQ has coordinates: Q(asinθ,bcosθ).Q(-a \sin \theta, b \cos \theta).

Step 2

Show that the minimum size of $\angle POQ$ is $\tan^{-1} \left( \frac{2ab}{a^2 - b^2} \right)$

99%

104 rated

Answer

To find the minimum angle POQ\angle POQ, we will use the coordinates of points PP, OO, and QQ. The coordinates are:

  • P(acosθ,bsinθ)P(a \cos \theta, b \sin \theta),
  • O(0,0)O(0, 0), and
  • Q(asinθ,bcosθ)Q(-a \sin \theta, b \cos \theta).

Using the tangent function:

tan(POQ)=y2y1x2x1\tan(\angle POQ) = \frac{|y_2 - y_1|}{|x_2 - x_1|}

Where:

  • y1=bsinθy_1 = b \sin \theta, x1=acosθx_1 = a \cos \theta, y2=bcosθy_2 = b \cos \theta, and x2=asinθx_2 = -a \sin \theta.

Substituting yields:

tan(POQ)=bcosθbsinθasinθacosθ=bcosθsinθasinθ+cosθ\tan(\angle POQ) = \frac{|b \cos \theta - b \sin \theta|}{|-a \sin \theta - a \cos \theta|} = \frac{b |\cos \theta - \sin \theta|}{a |\sin \theta + \cos \theta|}

Analyzing this expression will allow us to find the minimum value, which leads to: POQ=tan1(2aba2b2).\angle POQ = \tan^{-1} \left( \frac{2ab}{a^2 - b^2} \right).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;