Photo AI

Which of the following vectors is perpendicular to $3old{i} + 2old{j} - 5old{k}$? A - HSC - SSCE Mathematics Extension 2 - Question 1 - 2024 - Paper 1

Question icon

Question 1

Which-of-the-following-vectors-is-perpendicular-to-$3old{i}-+-2old{j}---5old{k}$?--A-HSC-SSCE Mathematics Extension 2-Question 1-2024-Paper 1.png

Which of the following vectors is perpendicular to $3old{i} + 2old{j} - 5old{k}$? A. $-old{i} - old{j} + old{k}$ B. $old{i} + old{j} - old{k}$ C. $-2old{i... show full transcript

Worked Solution & Example Answer:Which of the following vectors is perpendicular to $3old{i} + 2old{j} - 5old{k}$? A - HSC - SSCE Mathematics Extension 2 - Question 1 - 2024 - Paper 1

Step 1

Determine the vector components

96%

114 rated

Answer

The given vector is represented as: old{v} = 3old{i} + 2old{j} - 5old{k}

We need to check which of the given vectors is perpendicular to this vector.

Step 2

Check the first option: $-old{i} - old{j} + old{k}$

99%

104 rated

Answer

Calculate the dot product:

\ \bold{v} ullet old{v_1} = (3)(-1) + (2)(-1) + (-5)(1) = -3 - 2 - 5 = -10$$ This is not zero, so the vector is not perpendicular.

Step 3

Check the second option: $\bold{i} + \bold{j} - \bold{k}$

96%

101 rated

Answer

Calculate the dot product:

\ \bold{v} ullet old{v_2} = (3)(1) + (2)(1) + (-5)(-1) = 3 + 2 + 5 = 10$$ This is not zero, so the vector is not perpendicular.

Step 4

Check the third option: $-2\bold{i} + 3\bold{j} + \bold{k}$

98%

120 rated

Answer

Calculate the dot product:

\ \bold{v} ullet old{v_3} = (3)(-2) + (2)(3) + (-5)(1) = -6 + 6 - 5 = -5$$ This is not zero, so the vector is not perpendicular.

Step 5

Check the fourth option: $3\bold{i} - 2\bold{j} + \bold{k}$

97%

117 rated

Answer

Calculate the dot product:

\ \bold{v} ullet old{v_4} = (3)(3) + (2)(-2) + (-5)(1) = 9 - 4 - 5 = 0$$ This is zero, therefore the vector is perpendicular.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;