Photo AI
Question 12
Use the Question 12 Writing Booklet a) The vector **a** is $$ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} $$ and the vector **b** is $$ \begin{pmatrix} 2 \\ 0 \\ -... show full transcript
Step 1
Answer
To find ( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} ), we first calculate the dot products:
Calculate ( \mathbf{a} \cdot \mathbf{b} ):
Calculate ( \mathbf{b} \cdot \mathbf{b} ):
Finally, compute ( \frac{-10}{20} \mathbf{b} ):
Step 2
Answer
We already know ( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} = \begin{pmatrix} -1 \ 0 \ 2 \end{pmatrix} ). Now we compute:
( \mathbf{a} - \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} - \begin{pmatrix} -1 \ 0 \ 2 \end{pmatrix} = \begin{pmatrix} 1+1 \ 2-0 \ 3-2 \end{pmatrix} = \begin{pmatrix} 2 \ 2 \ 1 \end{pmatrix} )
Next, we find the dot product:
( \begin{pmatrix} 2 \ 2 \ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \ 0 \ -4 \end{pmatrix} = 2 \cdot 2 + 2 \cdot 0 + 1 \cdot (-4) = 4 - 4 = 0. )
Since the dot product is zero, the vector is perpendicular to ( \mathbf{b}. )
Step 3
Answer
We set up the partial fraction decomposition:
Multiplying through by the denominator:
Expanding and combining like terms gives us:
Now, integrate term by term:
( \int \frac{3}{x-1} , dx = 3 \ln|x-1| + C_1, )
Using substitution for ( x^2 + 1 ), we find:
( \int \frac{4x + 2}{x^2 + 1} , dx )
Combining results:
Step 4
Answer
Using the equation ( |z|^2 = z + 8 + 12i ):
We know that ( z = a + bi ) implies ( |z|^2 = a^2 + b^2 ). Substituting:
Step 5
Answer
Since we established ( b = -12 ): therefore:
Substituting back to find ( z ):
Step 6
Answer
To prove this statement, we analyze ( (n + 1)^1 - 79n^{40} = 2 ):
Step 7
Answer
Given points ( A(3, 5, -4) ) and ( B(7, 0, 2) ), we calculate a direction vector:
Step 8
Answer
To check if the point ( C(10, 5, -2) ) lies on the line ( \ell ):
Report Improved Results
Recommend to friends
Students Supported
Questions answered