Photo AI

Use the Question 12 Writing Booklet a) The vector **a** is $$ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} $$ and the vector **b** is $$ \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} $$ (i) Find \( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} - HSC - SSCE Mathematics Extension 2 - Question 12 - 2024 - Paper 1

Question icon

Question 12

Use-the-Question-12-Writing-Booklet--a)-The-vector-**a**-is--$$-\begin{pmatrix}-1-\\-2-\\-3-\end{pmatrix}-$$--and-the-vector-**b**-is--$$-\begin{pmatrix}-2-\\-0-\\--4-\end{pmatrix}-$$--(i)-Find-\(-\frac{\mathbf{a}-\cdot-\mathbf{b}}{\mathbf{b}-\cdot-\mathbf{b}}-\mathbf{b}-HSC-SSCE Mathematics Extension 2-Question 12-2024-Paper 1.png

Use the Question 12 Writing Booklet a) The vector **a** is $$ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} $$ and the vector **b** is $$ \begin{pmatrix} 2 \\ 0 \\ -... show full transcript

Worked Solution & Example Answer:Use the Question 12 Writing Booklet a) The vector **a** is $$ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} $$ and the vector **b** is $$ \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} $$ (i) Find \( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} - HSC - SSCE Mathematics Extension 2 - Question 12 - 2024 - Paper 1

Step 1

Find \( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b}. \)

96%

114 rated

Answer

To find ( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} ), we first calculate the dot products:

  1. Calculate ( \mathbf{a} \cdot \mathbf{b} ):

    ab=(123)(204)=12+20+3(4)=212=10\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = 1 \cdot 2 + 2 \cdot 0 + 3 \cdot (-4) = 2 - 12 = -10

  2. Calculate ( \mathbf{b} \cdot \mathbf{b} ):

    bb=(204)(204)=22+0+(4)(4)=4+16=20\mathbf{b} \cdot \mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = 2 \cdot 2 + 0 + (-4) \cdot (-4) = 4 + 16 = 20

  3. Finally, compute ( \frac{-10}{20} \mathbf{b} ):

    12(204)=(102)\frac{-1}{2} \begin{pmatrix} 2 \\ 0 \\ -4 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}

Step 2

Show that \( \mathbf{a} - \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} \) is perpendicular to \( \mathbf{b}. \)

99%

104 rated

Answer

We already know ( \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} = \begin{pmatrix} -1 \ 0 \ 2 \end{pmatrix} ). Now we compute:

( \mathbf{a} - \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}} \mathbf{b} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} - \begin{pmatrix} -1 \ 0 \ 2 \end{pmatrix} = \begin{pmatrix} 1+1 \ 2-0 \ 3-2 \end{pmatrix} = \begin{pmatrix} 2 \ 2 \ 1 \end{pmatrix} )

Next, we find the dot product:

( \begin{pmatrix} 2 \ 2 \ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \ 0 \ -4 \end{pmatrix} = 2 \cdot 2 + 2 \cdot 0 + 1 \cdot (-4) = 4 - 4 = 0. )

Since the dot product is zero, the vector is perpendicular to ( \mathbf{b}. )

Step 3

Use partial fractions to find $$ \int \frac{3x^2 + 2x + 1}{(x-1)(x^2 + 1)} \, dx. $$

96%

101 rated

Answer

We set up the partial fraction decomposition:

3x2+2x+1(x1)(x2+1)=Ax1+Bx+Cx2+1.\frac{3x^2 + 2x + 1}{(x-1)(x^2 + 1)} = \frac{A}{x-1} + \frac{Bx + C}{x^2 + 1}.

Multiplying through by the denominator:

3x2+2x+1=A(x2+1)+(Bx+C)(x1).3x^2 + 2x + 1 = A(x^2 + 1) + (Bx + C)(x-1).

Expanding and combining like terms gives us:

  1. Choose appropriate values for ( x ) to solve for ( A, B, C ):
    • Let ( x = 1 ): 3(1)2+2(1)+1=A(12+1)+(B(1)+C)(11)6=2AA=3.3(1)^2 + 2(1) + 1 = A(1^2 + 1) + (B(1)+C)(1-1) \\ 6 = 2A \\ A = 3.
    • Let ( x = 0 ): 1=3(02+1)+(B(0)+C)(1)1=3+C(1)C=2.1 = 3(0^2 + 1) + (B(0)+C)(-1) \\ 1 = 3 + C(-1) \\ C = 2.
    • Let ( x = -1 ): 3(1)2+2(1)+1=3(12+1)+(B(1)+C)(2)32+1=3(2)+(B+2)(2)2=62B+42B=8B=4.3(-1)^2 + 2(-1) + 1 = 3(-1^2 + 1) + (B(-1)+C)(-2) \\ 3 - 2 + 1 = 3(2) + (-B+2)(-2) \\ 2 = 6 - 2B + 4 \\ 2B = 8 \\ B = 4. We have determined ( A = 3, B = 4, C = 2 ), thus:

3x1+4x+2x2+1dx.\int \frac{3}{x-1} + \frac{4x + 2}{x^2 + 1} \, dx.

Now, integrate term by term:

  1. ( \int \frac{3}{x-1} , dx = 3 \ln|x-1| + C_1, )

  2. Using substitution for ( x^2 + 1 ), we find:

    ( \int \frac{4x + 2}{x^2 + 1} , dx )

    • Use substitution ( u = x^2 + 1, du = 2x , dx )
    • The integral becomes ( 2 \ln|x^2 + 1| + C_2. )

Combining results:

3lnx1+2lnx2+1+C.3 \ln|x-1| + 2 \ln|x^2 + 1| + C.

Step 4

Explain why \( b = -12. \)

98%

120 rated

Answer

Using the equation ( |z|^2 = z + 8 + 12i ):

We know that ( z = a + bi ) implies ( |z|^2 = a^2 + b^2 ). Substituting:

  1. The left-hand side gives: ( a^2 + b^2 = (a + bi) + 8 + 12i. )
  2. Comparing real and imaginary parts:
  • Real: ( a^2 + b^2 = a + 8 ) implies ( b^2 = -12. ) Since it gives no contradiction, we conclude ( b = -12. )

Step 5

Hence, or otherwise, find \( z. \)

97%

117 rated

Answer

Since we established ( b = -12 ): therefore:

Substituting back to find ( z ):

  1. From ( |z|^2 = a^2 + (-12)^2 = a^2 + 144. )
  2. By equating: ( a^2 + 144 = a + 8. )
  3. Rearranging gives the quadratic equation: ( a^2 - a + 136 = 0. )
  4. Solving this using the quadratic formula: ( a = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot 136}}{2\cdot 1} = \frac{1 \pm \sqrt{-543}}{2}. )
  5. Upon finding the solutions, we substitute back: ( z = a - 12i. )

Step 6

Explain why there is no integer \( n \) such that \( (n + 1)^1 - 79n^{40} = 2. \)

97%

121 rated

Answer

To prove this statement, we analyze ( (n + 1)^1 - 79n^{40} = 2 ):

  1. If ( n ) is odd, then ( (n + 1) ) will be even, and thus ( (n + 1)^1 ) is even.
  2. On the other hand, ( 79n^{40} ) will also be odd, hence the left-hand result will be odd, contradicting it being 2.
  3. If ( n ) is even, then ( (n + 1)^1 ) is odd, while ( 79n^{40} ) being even gives:
    • Therefore, the sum could still not equal 2. Concluding both scenarios show inconsistency, demonstrating that no integer ( n ) satisfies the equation.

Step 7

Find a vector equation of the line \( \ell. \)

96%

114 rated

Answer

Given points ( A(3, 5, -4) ) and ( B(7, 0, 2) ), we calculate a direction vector:

  1. Calculating directions: ( \mathbf{d} = \begin{pmatrix} 7 - 3 \ 0 - 5 \ 2 - (-4) \end{pmatrix} = \begin{pmatrix} 4 \ -5 \ 6 \end{pmatrix}. )
  2. The vector equation of the line then translates to: :(xyz)=(354)+λ(456),λR\ell: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 4 \\ -5 \\ 6 \end{pmatrix}, \lambda \in \mathbb{R}

Step 8

Determine, giving reasons, whether the point \( C(10, 5, -2) \) lies on the line \( \ell. \)

99%

104 rated

Answer

To check if the point ( C(10, 5, -2) ) lies on the line ( \ell ):

  1. Substitute to see if there exists a ( \lambda ) such that:
    • X component: ( 10 = 3 + 4\lambda ) implies ( \lambda = \frac{7}{4} ).
    • Y component: ( 5 = 5 - 5\lambda ) rearranges to verify has consistent values.
    • Z component: ( -2 = -4 + 6\lambda ) gives: ( \lambda = \frac{1}{3} ).
  2. These calculations produce inconsistent results of ( \lambda ) across components: hence, point ( C ) does not lie on the line ( \ell. )

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;