Photo AI

Let $z = 1 + 2i$ and $w = 3 - i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2004 - Paper 1

Question icon

Question 2

Let-$z-=-1-+-2i$-and-$w-=-3---i$-HSC-SSCE Mathematics Extension 2-Question 2-2004-Paper 1.png

Let $z = 1 + 2i$ and $w = 3 - i$. (a) (i) Find, in the form $x + iy$, $zw$. (ii) Find $\frac{10}{z}$. (b) Let $\alpha = 1 + i\sqrt{3}$ and $\beta = 1 + i$. (... show full transcript

Worked Solution & Example Answer:Let $z = 1 + 2i$ and $w = 3 - i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2004 - Paper 1

Step 1

Find, in the form $x + iy$, $zw$

96%

114 rated

Answer

To find zwzw, multiply the complex numbers:

zw=(1+2i)(3i)=3+6ii2=5+5i.zw = (1 + 2i)(3 - i) = 3 + 6i - i - 2 = 5 + 5i.

So, the answer is 5+5i5 + 5i.

Step 2

Find $\frac{10}{z}$

99%

104 rated

Answer

To find 10z\frac{10}{z}, we compute:

10z=101+2i12i12i=10(12i)1+4=1020i5=24i.\frac{10}{z} = \frac{10}{1 + 2i} \cdot \frac{1 - 2i}{1 - 2i} = \frac{10(1 - 2i)}{1 + 4} = \frac{10 - 20i}{5} = 2 - 4i.

Thus, 10z=24i.\frac{10}{z} = 2 - 4i.

Step 3

Find $\frac{\alpha}{\beta}$ in the form $x + iy$

96%

101 rated

Answer

For α=1+i3\alpha = 1 + i\sqrt{3} and β=1+i\beta = 1 + i, we have:

αβ=1+i31+i1i1i=(1+i3)(1i)1+1=1i+i3+12=2+(31)i2=1+312i.\frac{\alpha}{\beta} = \frac{1 + i\sqrt{3}}{1 + i} \cdot \frac{1 - i}{1 - i} = \frac{(1 + i\sqrt{3})(1 - i)}{1 + 1} = \frac{1 - i + i\sqrt{3} + 1}{2} = \frac{2 + (\sqrt{3} - 1)i}{2} = 1 + \frac{\sqrt{3} - 1}{2}i.

Thus, αβ=1+312i\frac{\alpha}{\beta} = 1 + \frac{\sqrt{3} - 1}{2}i.

Step 4

Express $\alpha$ in modulus-argument form

98%

120 rated

Answer

To express α\alpha in modulus-argument form, calculate the modulus and argument:

α=12+(3)2=4=2,|\alpha| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2,

and the argument is:

arg(α)=tan1(31)=π3.\arg(\alpha) = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}.

Thus, the modulus-argument form is:

α=2(cosπ3+isinπ3).\alpha = 2\left(\cos \frac{\pi}{3} + i\sin \frac{\pi}{3}\right).

Step 5

Find the modulus-argument form of $\frac{\alpha}{\beta}$

97%

117 rated

Answer

Using the result from part (iii), the modulus of β\beta is:

β=12+12=2,|\beta| = \sqrt{1^2 + 1^2} = \sqrt{2},

and the argument is:

Thus, we have:

αβ=22(cos(π3π4)+isin(π3π4))=2(cos(π12)+isin(π12)).\frac{\alpha}{\beta} = \frac{2}{\sqrt{2}}\left(\cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)\right) = \sqrt{2}\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right).

Step 6

Hence find the exact value of $\sin \frac{\pi}{12}$

97%

121 rated

Answer

Using the angle subtraction formula, we have:

Step 7

Sketch the region in the complex plane where $|z + w| \leq 1$ and $|z - i| \leq 1$ hold simultaneously

96%

114 rated

Answer

To sketch the regions, note that:

  1. The inequality z+w1|z + w| \leq 1 describes a circle centered at the origin with radius 1.
  2. The inequality zi1|z - i| \leq 1 describes a circle centered at (0, 1) with radius 1.

The overlapping area of these two regions is the solution to both inequalities.

Step 8

Using the fact that C lies on the circle, show geometrically that $\angle OAB = \frac{2\pi}{3}$

99%

104 rated

Answer

Since C lies on the circle, angles subtended by the same chord (AB) at the circumference are equal. Using properties of cyclic quadrilaterals, we have: $$\angle OAB = \angle OCB = \frac{1}{2} \cdot \text{arc } AB = \frac{2\pi}{3}.$

Step 9

Hence show that $z^3 = w^3$

96%

101 rated

Answer

Since OAB=2π3\angle OAB = \frac{2\pi}{3}, it follows that: $$z^3 = |z|^3 \text{cis}(\angle OAB) = |w|^3 \text{cis}(\angle OAB) = w^3.$

Step 10

Show that $z^2 + w^2 + zw = 0$

98%

120 rated

Answer

Using the identity: z2+w2=(z+w)22zw,z^2 + w^2 = (z + w)^2 - 2zw, we can rearrange to get: z2+w2+zw=(z+w)22zw+zw=(z+w)2zw=0.z^2 + w^2 + zw = (z + w)^2 - 2zw + zw = (z + w)^2 - zw = 0.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;