Photo AI

Let $z = 4 + i$ and $w = \overline{z}$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2007 - Paper 1

Question icon

Question 2

Let-$z-=-4-+-i$-and-$w-=-\overline{z}$-HSC-SSCE Mathematics Extension 2-Question 2-2007-Paper 1.png

Let $z = 4 + i$ and $w = \overline{z}$. Find, in the form $x + iy$, (i) $w$, (ii) $w - z$, (iii) $\frac{z}{w}$. Write $1 + i$ in the form $r(\cos \theta + i \sin ... show full transcript

Worked Solution & Example Answer:Let $z = 4 + i$ and $w = \overline{z}$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2007 - Paper 1

Step 1

Find $w$

96%

114 rated

Answer

To find ww, we substitute zz into the conjugate formula:

w=z=4+i=4i.w = \overline{z} = \overline{4 + i} = 4 - i.

Thus, it follows that w=4iw = 4 - i.

Step 2

Find $w - z$

99%

104 rated

Answer

We calculate:

wz=(4i)(4+i)=2i.w - z = (4 - i) - (4 + i) = -2i.

So, wz=2iw - z = -2i.

Step 3

Find $\frac{z}{w}$

96%

101 rated

Answer

Now, we compute:

zw=4+i4i.\frac{z}{w} = \frac{4 + i}{4 - i}.

To simplify this, we multiply the numerator and denominator by the conjugate of the denominator:

(4+i)(4+i)(4i)(4+i)=16+8i116+1=15+8i17.\frac{(4 + i)(4 + i)}{(4 - i)(4 + i)} = \frac{16 + 8i - 1}{16 + 1} = \frac{15 + 8i}{17}.

Thus, zw=1517+817i\frac{z}{w} = \frac{15}{17} + \frac{8}{17}i.

Step 4

Write $1 + i$ in the form $r(\cos \theta + i \sin \theta)$

98%

120 rated

Answer

We convert 1+i1 + i into polar form:

First, calculate the modulus:

r=12+12=2,r = \sqrt{1^2 + 1^2} = \sqrt{2},

and the argument:

θ=tan1(1)=π4.\theta = \tan^{-1}(1) = \frac{\pi}{4}.

So, we write:

1+i=2(cosπ4+isinπ4).1 + i = \sqrt{2}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}).

Step 5

Find $(1 + i)^{17}$ in the form $a + ib$

97%

117 rated

Answer

Using De Moivre's theorem:

(1+i)17=(2)17(cos(17π4)+isin(17π4))=28.5(cos17π4+isin17π4).(1 + i)^{17} = \left(\sqrt{2}\right)^{17}\left(\cos\left(17 \cdot \frac{\pi}{4}\right) + i \sin\left(17 \cdot \frac{\pi}{4}\right)\right) = 2^{8.5}\left(\cos\frac{17\pi}{4} + i\sin\frac{17\pi}{4}\right).

Now, 17π4\frac{17\pi}{4} can be simplified by subtracting 4π4\pi:

17π44π=17π16π4=π4.\frac{17\pi}{4} - 4\pi = \frac{17\pi - 16\pi}{4} = \frac{\pi}{4}.

Thus:

(1+i)17=28.5(cosπ4+isinπ4)=28.5(22+i22). (1 + i)^{17} = 2^{8.5}(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = 2^{8.5}\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right).
Letting 28.5=282=25622^{8.5} = 2^8 \cdot \sqrt{2} = 256\sqrt{2},

=256222+256222i=256+256i.= 256\sqrt{2}\frac{\sqrt{2}}{2} + 256\sqrt{2}\frac{\sqrt{2}}{2}i = 256 + 256i.

Therefore, (1+i)17=256+256i(1 + i)^{17}= 256 + 256i.

Step 6

Locus of $P$ as $z$ varies

97%

121 rated

Answer

The equation given is:

1z+1z=1.\frac{1}{z} + \frac{1}{\overline{z}} = 1.

Multiplying through by zzz \overline{z} gives:

z+z=zz.\overline{z} + z = z \overline{z}.

Letting z=x+iyz = x + iy, we have:

xiy+x+iy=(x2+y2)x - iy + x + iy = (x^2 + y^2) So:

2x=x2+y2.2x = x^2 + y^2.

This can be rearranged to:

y2=2xx2.y^2 = 2x - x^2.

The resulting equation represents a sideways parabola.

Step 7

Explain why $z_2 = \omega z_1$

96%

114 rated

Answer

Since ω=cosπ3+isinπ3\omega = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} represents a rotation by π3\frac{\pi}{3} radians on the Argand plane, it follows that if z1z_1 is at some position, z2z_2 is simply z1z_1 rotated by that angle. Therefore, we conclude:

z2=ωz1.z_2 = \omega z_1.

Step 8

Show that $z_1 z_2 = \omega^2$

99%

104 rated

Answer

From the relation established earlier:

z2=ωz1.z_2 = \omega z_1.

Thus:

z1z2=z1(ωz1)=ωz12.z_1 z_2 = z_1(\omega z_1) = \omega z_1^2.

Given that z1=1|z_1| = 1, it follows that:

z12=z12ω=ω2.z_1^2 = |z_1|^2\omega = \omega^2.

Step 9

Show that $z_1$ and $z_2$ are the roots of $z^2 - az - b = 0$

96%

101 rated

Answer

Let the roots be denoted by z1z_1 and z2z_2. The polynomial can be expressed as:

z2(z1+z2)z+z1z2=0.z^2 - (z_1 + z_2)z + z_1 z_2 = 0.

Using Vieta's formulas, we find that the sum is aa and the product is given as:

z1z2=ω2=b.z_1 z_2 = \omega^2 = b.

Consequently, z1z_1 and z2z_2 satisfy the equation z2azb=0.z^2 - az - b = 0.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;