Photo AI

Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 11 - 2016 - Paper 1

Question icon

Question 11

Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 2-Question 11-2016-Paper 1.png

Use a SEPARATE writing booklet. (a) Let $z = \sqrt{3} - i$. (i) Express $z$ in modulus–argument form. (ii) Show that $z^6$ is real. (iii) Find a positive integer... show full transcript

Worked Solution & Example Answer:Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 11 - 2016 - Paper 1

Step 1

Express $z$ in modulus–argument form.

96%

114 rated

Answer

To find the modulus and argument of z=3iz = \sqrt{3} - i, we first calculate the modulus:

z=(3)2+(1)2=3+1=4=2.|z| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{3 + 1} = \sqrt{4} = 2.

Next, we find the argument:

Arg(z)=tan1(13)=π6.\text{Arg}(z) = \tan^{-1}\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}.

Thus, we can express zz in modulus–argument form as:

z=2(cos(π6)+isin(π6)).z = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right).

Step 2

Show that $z^6$ is real.

99%

104 rated

Answer

To show that z6z^6 is real, we can use the modulus–argument form derived earlier:

z6=(2)6(cos(6π6)+isin(6π6))=64(cos(π)+isin(π))=64(1+0i)=64.z^6 = \left(2\right)^6 \left(\cos\left(-\frac{6\pi}{6}\right) + i\sin\left(-\frac{6\pi}{6}\right)\right) = 64 \left(\cos(-\pi) + i\sin(-\pi)\right) = 64 (-1 + 0i) = -64.

Since 64-64 is a real number, we confirm that z6z^6 is indeed real.

Step 3

Find a positive integer $n$ such that $z^n$ is purely imaginary.

96%

101 rated

Answer

For znz^n to be purely imaginary, the argument of znz^n must be an odd multiple of π2\frac{\pi}{2}. From the argument of zz:

Arg(z)=π6,\text{Arg}(z) = -\frac{\pi}{6},

We have:

Arg(zn)=n(π6).\text{Arg}(z^n) = n\left(-\frac{\pi}{6}\right).

Setting this equal to an odd multiple of π2\frac{\pi}{2}, we can write:

n(π6)=(2k+1)π2n\left(-\frac{\pi}{6}\right) = (2k + 1)\frac{\pi}{2}

where kk is an integer. Solving for nn gives:

n=3(2k+1).n = -3(2k + 1).

Taking the smallest positive integer, let k=0k = 0, so:

n=3.n = -3.

However, because we require a positive integer, we can choose n=3n = 3, as it gives:

z3=3i,z^3 = -\sqrt{3} - i,

which is purely imaginary.

Step 4

Find $\int xe^{-2x} dx$.

98%

120 rated

Answer

To solve the integral xe2xdx\int xe^{-2x} dx, we can use integration by parts.

Let:

  • u=xu = x thus du=dxdu = dx.
  • dv=e2xdxdv = e^{-2x}dx thus v=12e2xv = -\frac{1}{2}e^{-2x}.

Using integration by parts, we have:

udv=uvvdu,\int u \, dv = uv - \int v \, du,

Substituting in our values gives:

xe2xdx=x2e2x(12e2x)dx=x2e2x+14e2x+C.\int xe^{-2x} dx = -\frac{x}{2}e^{-2x} - \int\left(-\frac{1}{2}e^{-2x}\right)dx = -\frac{x}{2}e^{-2x} + \frac{1}{4} e^{-2x} + C.

Combining these terms yields:

xe2xdx=e2x2(x12)+C.\int xe^{-2x} dx = -\frac{e^{-2x}}{2}(x - \frac{1}{2}) + C.

Step 5

Find $\frac{dy}{dx}$ for the curve given by $x^3 + y^3 = 2xy$.

97%

117 rated

Answer

To find dydx\frac{dy}{dx} from the implicit equation x3+y3=2xyx^3 + y^3 = 2xy, we differentiate both sides with respect to xx:

ddx(x3)+ddx(y3)=ddx(2xy).\frac{d}{dx}(x^3) + \frac{d}{dx}(y^3) = \frac{d}{dx}(2xy).

Applying the chain rule and product rule leads to:

3x2+3y2dydx=2(y+xdydx).3x^2 + 3y^2\frac{dy}{dx} = 2\left(y + x\frac{dy}{dx}\right).

Rearranging gives:

3y2dydx2xdydx=2y3x2,3y^2\frac{dy}{dx} - 2x\frac{dy}{dx} = 2y - 3x^2,

factoring out dydx\frac{dy}{dx},

dydx(3y22x)=2y3x2.\frac{dy}{dx}(3y^2 - 2x) = 2y - 3x^2.

Thus, we find:

dydx=2y3x23y22x.\frac{dy}{dx} = \frac{2y - 3x^2}{3y^2 - 2x}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;