Photo AI

Let $z = 3 + i$ and $w = 1 - i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2005 - Paper 1

Question icon

Question 2

Let-$z-=-3-+-i$-and-$w-=-1---i$-HSC-SSCE Mathematics Extension 2-Question 2-2005-Paper 1.png

Let $z = 3 + i$ and $w = 1 - i$. Find, in the form $x + iy$: (i) $2z + iw$ (ii) $2w$ (iii) $6/w$. Let $eta = 1 - i oot{3}$. (i) Express $eta$ in modulus-argu... show full transcript

Worked Solution & Example Answer:Let $z = 3 + i$ and $w = 1 - i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2005 - Paper 1

Step 1

Find $2z + iw$

96%

114 rated

Answer

Given z=3+iz = 3 + i and w=1iw = 1 - i, we compute:

2z + iw & = 2(3 + i) + i(1 - i) \\ & = 6 + 2i + i - i^2 \\ & = 6 + 2i + i + 1 \\ & = 7 + 3i. \end{align*}$$ Therefore, $2z + iw = 7 + 3i$.

Step 2

Find $2w$

99%

104 rated

Answer

To find 2w2w, where w=1iw = 1 - i:

2w=2(1i)=22i.2w = 2(1 - i) = 2 - 2i. Thus, 2w=22i2w = 2 - 2i.

Step 3

Find $6/w$

96%

101 rated

Answer

To calculate 6/w6/w:

6/w & = 6/(1 - i) \\ & = 6(1 + i)/(1 - i)(1 + i) \\ & = (6 + 6i)/(1 + 1) \\ & = (6 + 6i)/2 \\ & = 3 + 3i. \end{align*}$$ So, $6/w = 3 + 3i$.

Step 4

Express $eta$ in modulus-argument form

98%

120 rated

Answer

Given eta = 1 - i oot{3}:

  • The modulus is:
oot{3})^2) = ext{sqr}(1 + 3) = ext{sqr}(4) = 2.$$ - The argument is: $$ ext{arg}(eta) = an^{-1} igg( rac{- oot{3}}{1} igg) = - rac{ ext{pi}}{3}.$$ So, in modulus-argument form, $eta = 2 ext{cis}(- rac{ ext{pi}}{3})$.

Step 5

Express $eta^3$ in modulus-argument form

97%

117 rated

Answer

To express eta^3, we calculate:

  • The modulus will be:

|eta^3| = |eta|^3 = 2^3 = 8.

  • The argument is:

ext{arg}(eta^3) = 3 imes ext{arg}(eta) = 3 imes igg(- rac{ ext{pi}}{3}igg) = - ext{pi}.

Thus, eta^3 = 8 ext{cis}(- ext{pi}).

Step 6

Express $eta^3$ in the form $x + iy$

97%

121 rated

Answer

From the previous step:

eta^3 = 8 ext{cis}(- ext{pi}) = 8 ( ext{cos}(- ext{pi}) + i ext{sin}(- ext{pi})) = 8(-1 + 0i) = -8.

Hence, eta^3 = -8 + 0i.

Step 7

Sketch the region on the Argand diagram

96%

114 rated

Answer

To sketch the region defined by the inequalities zz<2|z - z| < 2 and z1extatleast1|z - 1| ext{ at least 1}, consider:

  1. The region defined by zz<2|z - z| < 2 is a circle around the point zz with radius 2.
  2. The region z1>1|z - 1| > 1 represents an annulus centered at 1 with an outer radius of 1 and inner radius also of 1.

The overlap of these regions can be represented graphically.

Step 8

Explain why $| ext{arg}(z_1)| + | ext{arg}(z_2)| = 2 heta$

99%

104 rated

Answer

In this geometric reflection, since PP is reflected across the line ll, the angles extarg(z1) ext{arg}(z_1) and extarg(z2) ext{arg}(z_2) are equal to the angle heta heta. Thus, when combined, it forms:

extarg(z1)+extarg(z2)=heta+heta=2heta.| ext{arg}(z_1)| + | ext{arg}(z_2)| = heta + heta = 2 heta.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;