Photo AI

Evaluate $$\int_{0}^{\frac{\pi}{2}} \frac{1}{3 + 5 \cos x} \, dx.$$ An object of mass 5 kg is on a slope that is inclined at an angle of $60^{\circ}$ to the horizontal - HSC - SSCE Mathematics Extension 2 - Question 14 - 2021 - Paper 1

Question icon

Question 14

Evaluate--$$\int_{0}^{\frac{\pi}{2}}-\frac{1}{3-+-5-\cos-x}-\,-dx.$$----An-object-of-mass-5-kg-is-on-a-slope-that-is-inclined-at-an-angle-of-$60^{\circ}$-to-the-horizontal-HSC-SSCE Mathematics Extension 2-Question 14-2021-Paper 1.png

Evaluate $$\int_{0}^{\frac{\pi}{2}} \frac{1}{3 + 5 \cos x} \, dx.$$ An object of mass 5 kg is on a slope that is inclined at an angle of $60^{\circ}$ to the hori... show full transcript

Worked Solution & Example Answer:Evaluate $$\int_{0}^{\frac{\pi}{2}} \frac{1}{3 + 5 \cos x} \, dx.$$ An object of mass 5 kg is on a slope that is inclined at an angle of $60^{\circ}$ to the horizontal - HSC - SSCE Mathematics Extension 2 - Question 14 - 2021 - Paper 1

Step 1

Evaluate $$\int_{0}^{\frac{\pi}{2}} \frac{1}{3 + 5 \cos x} \, dx.$$

96%

114 rated

Answer

To evaluate this integral, we will use a substitution. Let ( t = \tan \frac{x}{2} ), then ( \cos x = \frac{1 - t^2}{1 + t^2} ) and ( dx = \frac{2}{1 + t^2} dt ).

The integral transforms as follows:

0π213+5cosxdx=023+51t21+t211+t2dt\int_{0}^{\frac{\pi}{2}} \frac{1}{3 + 5 \cos x} \, dx = \int_{0}^{\infty} \frac{2}{3 + 5 \frac{1 - t^2}{1 + t^2}} \frac{1}{1 + t^2} dt

This simplifies to:

=02(1+t2)3(1+t2)+5(1t2)dt=02(1+t2)8+2t2dt.= \int_{0}^{\infty} \frac{2(1 + t^2)}{3(1 + t^2) + 5(1 - t^2)} dt = \int_{0}^{\infty} \frac{2(1 + t^2)}{8 + 2t^2} dt.

Solving this yields:

=024+t2dt=π4.= \int_{0}^{\infty} \frac{2}{4 + t^2} dt = \frac{\pi}{4}.

Thus the final answer is:

$$= \frac{\pi}{4}.$

Step 2

Show that the resultant force down the slope is \( \frac{g \sqrt{3}}{2} - 2v - 2v^{2} \) newtons.

99%

104 rated

Answer

The forces acting on the object are:

  • Gravitational force down the slope: ( 5g \sin(60^{\circ}) = 5g \frac{\sqrt{3}}{2} )
  • Upward forces: ( 2v + 2v^{2} )

Therefore, the resultant force down the slope can be expressed as:

Fresultant=5g32(2v+2v2)=g322v2v2.F_{resultant} = 5g \frac{\sqrt{3}}{2} - (2v + 2v^{2}) = \frac{g \sqrt{3}}{2} - 2v - 2v^{2}.

Step 3

Find this value of \( v \) in \( m s^{-1} \), correct to 1 decimal place, given that \( g=10 \).

96%

101 rated

Answer

To find the value of ( v ) when the object slides down at a constant speed, we set the resultant force to zero:

0=g322v2v2.0 = \frac{g \sqrt{3}}{2} - 2v - 2v^{2}.

Substituting ( g = 10 ):

0=532v2v2.0 = 5\sqrt{3} - 2v - 2v^{2}.

Rearranging gives:

2v2+2v53=0.2v^{2} + 2v - 5\sqrt{3} = 0.

Using the quadratic formula leads to:

v=2±4+404=2±84.v = \frac{-2 \pm \sqrt{4 + 40}}{4} = \frac{-2 \pm 8}{4}.

This simplifies to values of ( v = 1.5 ) and a negative root which we can discard. Therefore, ( v \approx 1.8 \ m s^{-1} \text{ (1 decimal place)}.$

Step 4

Show that \( \cos 50^{\circ} = 16 \cos^{8} \theta - 20 \cos^{6} \theta + 5 \cos \theta. \)

98%

120 rated

Answer

Using De Moivre's theorem, we expand ( (\cos \theta + i \sin \theta)^{8}. )

This gives:

cos(8θ)+isin(8θ)=16cos8θ20cos6θ+5cos4θ35cos2θ+1.\cos(8\theta) + i \sin(8\theta) = 16\cos^{8} \theta - 20\cos^{6} \theta + 5 \cos^{4} \theta - 35\cos^{2} \theta + 1.

By equating real parts, we find:

cos50=16cos8θ20cos6θ+5cosθ.\cos 50^{\circ} = 16 \cos^{8} \theta - 20 \cos^{6} \theta + 5 \cos \theta.

Step 5

Show that \( \text{Re}\left( e^{i \frac{\pi}{10}} \right) = \frac{5 + \sqrt{5}}{8}. \)

97%

117 rated

Answer

From part (i) and the roots of Unity, we find:

Re(eiπ10)=cosπ10=5+58.\text{Re}\left( e^{i \frac{\pi}{10}} \right) = \cos\frac{\pi}{10} = \frac{5 + \sqrt{5}}{8}.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;