Photo AI

Let $z = 2 - i oot{3}$ and $w = 1 + i oot{3}$ - HSC - SSCE Mathematics Extension 2 - Question 11 - 2013 - Paper 1

Question icon

Question 11

Let-$z-=-2---i-oot{3}$-and-$w-=-1-+-i-oot{3}$-HSC-SSCE Mathematics Extension 2-Question 11-2013-Paper 1.png

Let $z = 2 - i oot{3}$ and $w = 1 + i oot{3}$. (i) Find $z + w$. (ii) Express $w$ in modulus-argument form. (iii) Write $w^{24}$ in its simplest form. (b) F... show full transcript

Worked Solution & Example Answer:Let $z = 2 - i oot{3}$ and $w = 1 + i oot{3}$ - HSC - SSCE Mathematics Extension 2 - Question 11 - 2013 - Paper 1

Step 1

(i) Find $z + w$

96%

114 rated

Answer

To find z+wz + w, we simply add the two complex numbers:

z+w=(2i3)+(1+i3) z + w = (2 - i\sqrt{3}) + (1 + i\sqrt{3})

Combining the real and imaginary parts gives us:

z+w=(2+1)+(i3+i3)=3+0i=3. z + w = (2 + 1) + (-i\sqrt{3} + i\sqrt{3}) = 3 + 0i = 3.

Step 2

(ii) Express $w$ in modulus-argument form.

99%

104 rated

Answer

To express ww in modulus-argument form, we first find the modulus:

w=12+(3)2=1+3=4=2. |w| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2.

Next, we find the argument, which is given by:

arg(w)=tan1((w)(w))=tan1(31)=π3. \arg(w) = \tan^{-1}\left(\frac{\Im(w)}{\Re(w)}\right) = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}.

Therefore, we can express ww as:

w=2 cis π3. w = 2 \text{ cis } \frac{\pi}{3}.

Step 3

(iii) Write $w^{24}$ in its simplest form.

96%

101 rated

Answer

Using De Moivre's Theorem, we can compute:

w24=(2 cis π3)24=224 cis (24π3)=224 cis 8π. w^{24} = (2 \text{ cis } \frac{\pi}{3})^{24} = 2^{24} \text{ cis } \left(24 \cdot \frac{\pi}{3}\right) = 2^{24} \text{ cis } 8\pi.

Since  cis 8π=1\text{ cis } 8\pi = 1 (because it corresponds to a full circle), we have:

w24=224imes1=16777216. w^{24} = 2^{24} imes 1 = 16777216.

Step 4

Find numbers $A$, $B$ and $C$ such that $$\frac{x^2 + 8x + 11}{(x - 3)(x^2 + 2)} = \frac{A}{x - 3} + \frac{Bx + C}{x^2 + 2}$$

98%

120 rated

Answer

To find AA, BB, and CC, we start by equating:

x2+8x+11=A(x2+2)+(Bx+C)(x3). x^2 + 8x + 11 = A(x^2 + 2) + (Bx + C)(x - 3).

Expanding the right side:

Ax2+2A+Bx23Bx+Cx3C. Ax^2 + 2A + Bx^2 - 3Bx + Cx - 3C.

Combining like terms:

(A+B)x2+(3B+C)x+(2A3C). (A + B)x^2 + (-3B + C)x + (2A - 3C).

Now we equate coefficients:

  1. For x2x^2: A+B=1A + B = 1
  2. For xx: 3B+C=8-3B + C = 8
  3. For constant term: 2A3C=112A - 3C = 11.

Solving this system will yield values for A,B,A, B, and CC.

Step 5

Factorise $z^2 + 4iz + 5$.

97%

117 rated

Answer

To factorise the expression, we start by using the quadratic formula:

z=b±b24ac2a, z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},

where a=1a = 1, b=4ib = 4i, and c=5c = 5.

Calculating the discriminant:

b24ac=(4i)24(1)(5)=1620=36. b^2 - 4ac = (4i)^2 - 4(1)(5) = -16 - 20 = -36.

Now substituting into the quadratic formula:

z=4i±362=4i±6i2. z = \frac{-4i \pm \sqrt{-36}}{2} = \frac{-4i \pm 6i}{2}.

This gives us:

z=4i+6i2,4i6i2=i,5i.z = \frac{-4i + 6i}{2}, \quad \frac{-4i - 6i}{2} = i, -5i.

Thus, we can factor as:

(zi)(z+5i). (z - i)(z + 5i).

Step 6

Evaluate $$\int_0^{1} x^3 \sqrt{1 - x^2} dx.$$

97%

121 rated

Answer

To evaluate the integral, we can use the substitution:

Let x=sin(θ)x = \sin(\theta), then dx=cos(θ)dθdx = \cos(\theta) d\theta. The limits change from 00 to π2\frac{\pi}{2}.

The integral becomes:

0π2sin3(θ)1sin2(θ)cos(θ)dθ=0π2sin3(θ)cos2(θ)dθ. \int_0^{\frac{\pi}{2}} \sin^3(\theta) \sqrt{1 - \sin^2(\theta)} \cos(\theta) d\theta = \int_0^{\frac{\pi}{2}} \sin^3(\theta) \cos^2(\theta) d\theta.

Using the identity: cos2(θ)=1sin2(θ)\cos^2(\theta) = 1 - \sin^2(\theta), we can rewrite:

0π2sin3(θ)(1sin2(θ))dθ. \int_0^{\frac{\pi}{2}} \sin^3(\theta) (1 - \sin^2(\theta)) d\theta.

Evaluating the integral involves standard techniques such as integration by parts or further substitution.

Step 7

Sketch the region on the Argand diagram defined by $z^2 + \bar{z}^2 \leq 8$.

96%

114 rated

Answer

To sketch the region defined by the inequality z2+zˉ28z^2 + \bar{z}^2 \leq 8, we start from the expression:

Let z=x+iyz = x + iy, then zˉ=xiy\bar{z} = x - iy. Thus:

z2=(x+iy)2=x2y2+2xyi,zˉ2=(xiy)2=x2y22xyi. z^2 = (x + iy)^2 = x^2 - y^2 + 2xyi, \quad \bar{z}^2 = (x - iy)^2 = x^2 - y^2 - 2xyi.

Adding these gives:

z2+zˉ2=2(x2y2). z^2 + \bar{z}^2 = 2(x^2 - y^2).

Setting this equal to 88 gives:

2(x2y2) extthussolvingyieldstheboundaryx2y2=4. 2(x^2 - y^2) \ ext{ thus solving yields the boundary } x^2 - y^2 = 4.

Graphically, this represents a hyperbola in the Argand diagram. The region defined by the inequality will be the area within this boundary.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;