Photo AI

Let $z = 2 + 3i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2001 - Paper 1

Question icon

Question 2

Let-$z-=-2-+-3i$-and-$w-=-1-+-i$-HSC-SSCE Mathematics Extension 2-Question 2-2001-Paper 1.png

Let $z = 2 + 3i$ and $w = 1 + i$. Find $zw$ and $\frac{1}{w}$ in the form $x + iy$. Express $1 + \sqrt{3}i$ in modulus-argument form. Hence evaluate $(1 + \sqrt{3... show full transcript

Worked Solution & Example Answer:Let $z = 2 + 3i$ and $w = 1 + i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2001 - Paper 1

Step 1

Find $zw$ and $\frac{1}{w}$ in the form $x + iy$

96%

114 rated

Answer

To find zwzw, we multiply the complex numbers:
zw=(2+3i)(1+i)=2(1)+2(i)+3i(1)+3i(i)=2+2i+3i3=1+5i.zw = (2 + 3i)(1 + i) = 2(1) + 2(i) + 3i(1) + 3i(i) = 2 + 2i + 3i - 3 = -1 + 5i.
Thus, ( zw = -1 + 5i. )

To find 1w\frac{1}{w}, apply the formula for the reciprocity of a complex number:
1w=11+i1i1i=1i1+1=1i2=1212i.\frac{1}{w} = \frac{1}{1 + i} \cdot \frac{1 - i}{1 - i} = \frac{1 - i}{1 + 1} = \frac{1 - i}{2} = \frac{1}{2} - \frac{1}{2}i.
Hence, ( \frac{1}{w} = \frac{1}{2} - \frac{1}{2}i. )

Step 2

Express $1 + \sqrt{3}i$ in modulus-argument form

99%

104 rated

Answer

The modulus of the complex number is calculated as follows:
r=1+3i=12+(3)2=1+3=4=2.r = |1 + \sqrt{3}i| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2.
For the argument:
θ=tan1(31)=π3.\theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}.
Thus, in modulus-argument form, we have:
1+3i=2(cosπ3+isinπ3).1 + \sqrt{3}i = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right).

Step 3

Hence evaluate $(1 + \sqrt{3}i)^{10}$ in the form $x + iy$

96%

101 rated

Answer

Using De Moivre's theorem:
(1+3i)10=(2)10(cos(10π3)+isin(10π3)).(1 + \sqrt{3}i)^{10} = \left(2\right)^{10}\left(\cos\left(10 \cdot \frac{\pi}{3}\right) + i\sin\left(10 \cdot \frac{\pi}{3}\right)\right).
Calculating the modulus:
210=1024.2^{10} = 1024.
Calculating the argument:
10π3=10π3=4π3+2π.10 \cdot \frac{\pi}{3} = \frac{10\pi}{3} = \frac{4\pi}{3} + 2\pi.
This can be reduced to (\frac{4\pi}{3} \.
Now substituting back:
cos(4π3)=12, sin(4π3)=32.\cos\left(\frac{4\pi}{3}\right) = -\frac{1}{2}, \ \sin\left(\frac{4\pi}{3}\right) = -\frac{\sqrt{3}}{2}.
Therefore,
(1+3i)10=1024(12+i(32))=5125123i.(1 + \sqrt{3}i)^{10} = 1024\left(-\frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right)\right) = -512 - 512\sqrt{3}i.

Step 4

Sketch the region in the complex plane where $|z + 1 - 2i| \leq 3$ and $-\frac{\pi}{3} \leq arg(z) \leq \frac{\pi}{4}$ hold

98%

120 rated

Answer

The inequality z+12i3|z + 1 - 2i| \leq 3 describes a circle with center at (1,2)(-1, 2) and radius 33. The second part indicates that the argument of zz lies between two angles. In the complex plane, this results in a slice of the plane bounded between the angles corresponding to π3-\frac{\pi}{3} and π4\frac{\pi}{4} from the origin, while the entire area must also be within the circle described. Thus, the sketch will depict a circular region bounded within these angular limits.

Step 5

Find all solutions of the equation $z^4 = -1$

97%

117 rated

Answer

To find the solutions to the equation: z4=1z^4 = -1
we can express 1-1 in modulus-argument form: 1=1(cos(π)+isin(π)).-1 = 1\left(\cos(\pi) + i\sin(\pi)\right).
Applying De Moivre's theorem, we find the fourth roots: zk=14(cos(π+2kπ4)+isin(π+2kπ4)),k=0,1,2,3.z_k = \sqrt[4]{1}\left(\cos\left(\frac{\pi + 2k\pi}{4}\right) + i\sin\left(\frac{\pi + 2k\pi}{4}\right)\right), k = 0, 1, 2, 3.
Calculating for each kk:

  • For k=0k=0: z0=eiπ4z_0 = e^{i\frac{\pi}{4}}
  • For k=1k=1: z1=ei3π4z_1 = e^{i\frac{3\pi}{4}}
  • For k=2k=2: z2=ei5π4z_2 = e^{i\frac{5\pi}{4}}
  • For k=3k=3: z3=ei7π4z_3 = e^{i\frac{7\pi}{4}}
    The solutions are:
    z0=1(cos(π4)+isin(π4)),z1=1(cos(3π4)+isin(3π4)), etc.z_0 = 1\left(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})\right), z_1 = 1\left(\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})\right), \ \text{etc.}

Step 6

Explain why $|z_1 - z_2|^2 = (z_3 - z_2)^2$

97%

121 rated

Answer

Given that triangle ABCABC is isosceles and right-angled at BB, we have:
z1z2=z3z2|z_1 - z_2| = |z_3 - z_2|
which implies:
z1z22=(z1z2)(z1z2)=z3z22=(z3z2)(z3z2).|z_1 - z_2|^2 = (z_1 - z_2)(\overline{z_1 - z_2}) = |z_3 - z_2|^2 = (z_3 - z_2)(\overline{z_3 - z_2}).
Therefore, we establish that
z1z22=(z3z2)2|z_1 - z_2|^2 = (z_3 - z_2)^2
is a true statement.

Step 7

Find the complex number representing $D$

96%

114 rated

Answer

The point DD can be defined geometrically as the vertex of the square ABCDABCD, which can be derived using:
D=z1+(z2z1)i.D = z_1 + (z_2 - z_1)i.
Expressing in terms of z1,z2z_1, z_2 and z3z_3 would yield:
D=z2+(z3z2)i.D = z_2 + (z_3 - z_2)i.
This directly relates the vertices together in the square formation.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;