Photo AI

Which of the following is a true statement about the lines ewline $$oldsymbol{l_1 = egin{pmatrix} -1 \ 2 \ 5 \\ extcolor{red}{+} \lambda \begin{pmatrix} 3 \\ 1 \\ -1 \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \ 3} \\ -10} \ 1} \\ -3} \ 1}$$ ewline? - HSC - SSCE Mathematics Extension 2 - Question 5 - 2023 - Paper 1

Question icon

Question 5

Which-of-the-following-is-a-true-statement-about-the-lines---ewline-$$oldsymbol{l_1-=-egin{pmatrix}--1-\-2-\-5-\\--extcolor{red}{+}-\lambda-\begin{pmatrix}-3-\\-1-\\--1-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\\--extcolor{red}{-ext{}}-\-3}-\\--10}-\-1}-\\--3}-\-1}$$---ewline?-HSC-SSCE Mathematics Extension 2-Question 5-2023-Paper 1.png

Which of the following is a true statement about the lines ewline $$oldsymbol{l_1 = egin{pmatrix} -1 \ 2 \ 5 \\ extcolor{red}{+} \lambda \begin{pmatrix} 3 \\ 1 ... show full transcript

Worked Solution & Example Answer:Which of the following is a true statement about the lines ewline $$oldsymbol{l_1 = egin{pmatrix} -1 \ 2 \ 5 \\ extcolor{red}{+} \lambda \begin{pmatrix} 3 \\ 1 \\ -1 \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \\ extcolor{red}{ ext{}} \ 3} \\ -10} \ 1} \\ -3} \ 1}$$ ewline? - HSC - SSCE Mathematics Extension 2 - Question 5 - 2023 - Paper 1

Step 1

Determine the direction vectors

96%

114 rated

Answer

For line l1l_1, the direction vector is given by the term with λ\lambda: d1=(311)\mathbf{d_1} = \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix}

For line l2l_2, the direction vector is derived from the parameter μ\mu (the terms that would accompany it): d2=(131)\mathbf{d_2} = \begin{pmatrix} 1 \\ -3 \\ 1 \end{pmatrix}

Step 2

Check for parallelism

99%

104 rated

Answer

Lines are parallel if their direction vectors are scalar multiples of each other. To check if d1\mathbf{d_1} and d2\mathbf{d_2} are parallel, we verify if there exists a scalar kk such that: d1=kd2\mathbf{d_1} = k\mathbf{d_2}

If we set up the equations from the components:

  1. 3=k(1)3 = k(1)
  2. 1=k(3)1 = k(-3)
  3. 1=k(1)-1 = k(1)

From the first equation, k=3k = 3. However, substituting k=3k = 3 into the second equation gives us

13(3)    191 \neq 3(-3) \implies 1 \neq -9.

Thus, the lines are not parallel.

Step 3

Check for intersection

96%

101 rated

Answer

To determine if the lines intersect, we need to solve the equations:

  1. (1+3λ)=(3)\begin{pmatrix} -1 + 3\lambda \end{pmatrix} = \begin{pmatrix} 3 \end{pmatrix}
  2. (2+λ)=(10+μ(3))\begin{pmatrix} 2 + \lambda \end{pmatrix} = \begin{pmatrix} -10 + \mu(-3) \end{pmatrix}
  3. (5+λ)=(1)\begin{pmatrix} 5 + \lambda \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}

By solving these equations for λ\lambda and μ\mu, we find that no solution exists. Thus, the lines are not the same and do not intersect.

Step 4

Conclusion

98%

120 rated

Answer

Since the lines are neither parallel nor do they intersect, the correct statement is:

D. l1l_1 and l2l_2 are not parallel and they do not intersect.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;