Photo AI

Question 1 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 1 - 2008 - Paper 1

Question icon

Question 1

Question-1-(15-marks)-Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 2-Question 1-2008-Paper 1.png

Question 1 (15 marks) Use a SEPARATE writing booklet. (a) Find \( \int \frac{x^2}{(5+x^2)^2} \: dx \). (b) Find \( \int \frac{dx}{\sqrt{4x^2+1}} \). (c) Evaluate ... show full transcript

Worked Solution & Example Answer:Question 1 (15 marks) Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 1 - 2008 - Paper 1

Step 1

Find \( \int \frac{x^2}{(5+x^2)^2} \: dx \)

96%

114 rated

Answer

To solve this integral, we can use the substitution method. Let ( u = 5 + x^2 ). Then, ( du = 2x , dx ) or ( dx = \frac{du}{2x} ), and we replace ( x^2 ) with ( u - 5 ).

This gives us:

[ \int \frac{x^2}{(5+x^2)^2} : dx = \int \frac{u-5}{u^2} \cdot \frac{du}{2x} = \frac{1}{2} \int \frac{u-5}{u^2} du]

Now we can separate this integral and evaluate:

[ \frac{1}{2} \left( \int \frac{1}{u} du - 5 \int \frac{1}{u^2} du \right) = \frac{1}{2} (\ln |u| + \frac{5}{u}) + C]

Substituting back ( u = 5 + x^2 ) results in:

[ \frac{1}{2} \left( \ln(5+x^2) + \frac{5}{5+x^2} \right) + C ]

Step 2

Find \( \int \frac{dx}{\sqrt{4x^2+1}} \)

99%

104 rated

Answer

This integral can be solved using the inverse hyperbolic function. We can recognize that:

[ \int \frac{dx}{\sqrt{4x^2+1}} = \frac{1}{2} \ln |2x + \sqrt{4x^2+1}| + C ]

Step 3

Evaluate \( \int_0^1 \tan^{-1} x \, dx \)

96%

101 rated

Answer

To evaluate this integral, we can use integration by parts. Let:

[ u = \tan^{-1} x, , dv = dx \Rightarrow du = \frac{1}{1+x^2} dx , and : v = x ]

Now applying integration by parts:

[ \int u , dv = uv - \int v , du ]

Evaluate at limits 0 and 1 gives:

[ \left[ x \tan^{-1} x \right]_0^1 - \int_0^1 \frac{x}{1+x^2} dx = \frac{\pi}{4} - \frac{1}{2} \ln(2) ]

Step 4

Evaluate \( \int_2^0 \frac{dx}{\sqrt{2x-1}} \)

98%

120 rated

Answer

For this integral, we can switch the limits and evaluate:

[ \int_2^0 \frac{dx}{\sqrt{2x-1}} = - \int_0^2 \frac{dx}{\sqrt{2x-1}}]

Using the substitution ( x = \frac{1}{2}u^2 + \frac{1}{2} ), we can evaluate this integral to yield the final form:

[ - \ln(\sqrt{2x-1}+1) \text{ evaluated between 0 and 2} ]

Step 5

Use this result to evaluate \( \int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} \: dx \)

97%

117 rated

Answer

Using the given result and simplifying, we can write the integral as:

[ \int_0^1 \frac{8(1-x)}{(2-x^2)(2-2x+x^2)} : dx = \int_0^1 \left( \frac{4-2x}{2-2x+x^2} - \frac{2x}{2-x^2} \right) dx]

Evaluating each term separately will give us the final answer.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;