Photo AI

Find \( \int xe^x \, dx \) - HSC - SSCE Mathematics Extension 2 - Question 11 - 2024 - Paper 1

Question icon

Question 11

Find-\(-\int-xe^x-\,-dx-\)-HSC-SSCE Mathematics Extension 2-Question 11-2024-Paper 1.png

Find \( \int xe^x \, dx \). Let \( z = 2 + 3i \) and \( w = 1 - 5i \). (i) Find \( z + \overline{w} \). (ii) Find \( z^2 \). Find the angle between the two vecto... show full transcript

Worked Solution & Example Answer:Find \( \int xe^x \, dx \) - HSC - SSCE Mathematics Extension 2 - Question 11 - 2024 - Paper 1

Step 1

Find \( \int xe^x \, dx \)

96%

114 rated

Answer

To find the integral ( \int xe^x , dx ), we use integration by parts. Let:

  • ( u = x )
  • ( dv = e^x , dx )

Then, differentiate and integrate:

  • ( du = dx )
  • ( v = e^x )

Applying the integration by parts formula ( \int u , dv = uv - \int v , du ):

[ \int xe^x , dx = xe^x - \int e^x , dx = xe^x - e^x + C. ]

Thus, the answer is ( xe^x - e^x + C ).

Step 2

Find \( z + \overline{w} \)

99%

104 rated

Answer

Given ( z = 2 + 3i ) and ( w = 1 - 5i ), we first find the conjugate of ( w ):

[ \overline{w} = 1 + 5i. ]

Now add:

[ z + \overline{w} = (2 + 3i) + (1 + 5i) = 3 + 8i. ]

Step 3

Find \( z^2 \)

96%

101 rated

Answer

To find ( z^2 ) where ( z = 2 + 3i ), we compute:

[ z^2 = (2 + 3i)^2 = 4 + 12i - 9 = -5 + 12i. ]

Step 4

Find the angle between the two vectors \( \mathbf{u} \) and \( \mathbf{v} \)

98%

120 rated

Answer

Using the formula for the angle between two vectors:

[ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} ]

First, calculate the dot product:

[ \mathbf{u} \cdot \mathbf{v} = 1 \cdot (-4) + (-2) \cdot 7 = -4 - 14 = -18. ]

Now calculate the magnitudes:

[ |\mathbf{u}| = \sqrt{1^2 + (-2)^2} = \sqrt{5}, \quad |\mathbf{v}| = \sqrt{(-4)^2 + 7^2} = \sqrt{65}. ]

Substituting into the formula gives:

[ \cos \theta = \frac{-18}{\sqrt{5} \sqrt{65}} \approx -0.721. ]

Thus, ( \theta ) is:

[ \theta \approx \cos^{-1}(-0.721) \approx 2.3 \text{ radians}. ]

Step 5

Evaluate \( \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin \theta + 1} \, d\theta. \)

97%

117 rated

Answer

We make the substitution ( t = \sin \theta + 1 ), then ( dt = \cos \theta , d\theta ). Changing the limits from ( \theta = 0 ) to ( \theta = \frac{\pi}{2} ):

  • When ( \theta = 0 ), ( t = 1 )
  • When ( \theta = \frac{\pi}{2} ), ( t = 2 )

This transforms our integral:

[ \int_{1}^{2} \frac{1}{t} , dt = \ln t \Big|_{1}^{2} = \ln 2. ]

Step 6

Write the number \( \sqrt{3} + i \) in modulus-argument form.

97%

121 rated

Answer

To express ( \sqrt{3} + i ) in modulus-argument form, we first find the modulus:

[ r = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3 + 1} = 2. ]

Next, we find the argument:

[ \theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}. ]

Thus, the modulus-argument form is:

[ \sqrt{3} + i = 2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right). ]

Step 7

Write \( \sqrt{3} + i \) in exact Cartesian form.

96%

114 rated

Answer

From the previous result, using modulus-argument form, we write:

[ \sqrt{3} + i = 2 \left( \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) = 2 \left( \frac{\sqrt{3}}{2} + \frac{1}{2} i \right) = \sqrt{3} + i. ]

Step 8

Sketch the region defined by \( |z| < 3 \) and \( 0 \leq \arg(z - i) \leq \frac{\pi}{2}. \)

99%

104 rated

Answer

The region defined by ( |z| < 3 ) is the interior of a circle with radius 3 centered at the origin. The condition ( 0 \leq \arg(z - i) \leq \frac{\pi}{2} ) restricts the region to the first quadrant. Therefore, the sketch shows a circular sector with radius 3 in the first quadrant, bounded by the positive real axis (where ( \arg = 0 )) and the line ( y = x ) (where ( \arg = \frac{\pi}{2} )).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;