Photo AI

Evaluate $$\int_{0}^{1} \frac{e^x}{(1+e^x)^{2}} \; dx.$$ (b) Use integration by parts to find $$\int x^{3} \log_{e} x \, dx.$$ (c) By completing the square and using the table of standard integrals, find $$\int \frac{dx}{\sqrt{2-x^{2}+5}}.$$ (d) (i) Find the real numbers a and b such that $$\frac{5x^{2}-3x+13}{(x-1)(x^{2}+4)}=\frac{a}{x-1}+\frac{bx-1}{x^{2}+4}.$$ (ii) Find $$\int \frac{5x^{2}-3x+13}{(x-1)(x^{2}+4)} \, dx.$$ (e) Use the substitution $x=3\sin\theta$ to evaluate $$\int_{0}^{\frac{3}{2}} \frac{dx}{(9-x^{2})^{\frac{3}{2}}}.$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2003 - Paper 1

Question icon

Question 1

Evaluate--$$\int_{0}^{1}-\frac{e^x}{(1+e^x)^{2}}-\;-dx.$$---(b)-Use-integration-by-parts-to-find---$$\int-x^{3}-\log_{e}-x-\,-dx.$$---(c)-By-completing-the-square-and-using-the-table-of-standard-integrals,-find--$$\int-\frac{dx}{\sqrt{2-x^{2}+5}}.$$---(d)--(i)-Find-the-real-numbers-a-and-b-such-that---$$\frac{5x^{2}-3x+13}{(x-1)(x^{2}+4)}=\frac{a}{x-1}+\frac{bx-1}{x^{2}+4}.$$---(ii)-Find--$$\int-\frac{5x^{2}-3x+13}{(x-1)(x^{2}+4)}-\,-dx.$$---(e)-Use-the-substitution-$x=3\sin\theta$-to-evaluate--$$\int_{0}^{\frac{3}{2}}-\frac{dx}{(9-x^{2})^{\frac{3}{2}}}.$-HSC-SSCE Mathematics Extension 2-Question 1-2003-Paper 1.png

Evaluate $$\int_{0}^{1} \frac{e^x}{(1+e^x)^{2}} \; dx.$$ (b) Use integration by parts to find $$\int x^{3} \log_{e} x \, dx.$$ (c) By completing the square an... show full transcript

Worked Solution & Example Answer:Evaluate $$\int_{0}^{1} \frac{e^x}{(1+e^x)^{2}} \; dx.$$ (b) Use integration by parts to find $$\int x^{3} \log_{e} x \, dx.$$ (c) By completing the square and using the table of standard integrals, find $$\int \frac{dx}{\sqrt{2-x^{2}+5}}.$$ (d) (i) Find the real numbers a and b such that $$\frac{5x^{2}-3x+13}{(x-1)(x^{2}+4)}=\frac{a}{x-1}+\frac{bx-1}{x^{2}+4}.$$ (ii) Find $$\int \frac{5x^{2}-3x+13}{(x-1)(x^{2}+4)} \, dx.$$ (e) Use the substitution $x=3\sin\theta$ to evaluate $$\int_{0}^{\frac{3}{2}} \frac{dx}{(9-x^{2})^{\frac{3}{2}}}.$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2003 - Paper 1

Step 1

Evaluate $$\int_{0}^{1} \frac{e^x}{(1+e^x)^{2}} \; dx.$$

96%

114 rated

Answer

To evaluate this integral, we can use the substitution method. Let: u=1+ex,u = 1 + e^x,
therefore, du=exdxdu = e^x \, dx or dx=duex=duu1.dx = \frac{du}{e^x} = \frac{du}{u-1}.

The limits change as follows: when x=0x = 0, u=2u = 2, and when x=1x = 1, u=1+e.u = 1 + e.

The integral becomes:
21+e1u2du.\int_{2}^{1+e} \frac{1}{u^{2}} \, du. Evaluating this yields:
[1u]21+e=11+e+12=1211+e.[-\frac{1}{u}]_{2}^{1+e} = -\frac{1}{1+e} + \frac{1}{2} = \frac{1}{2} - \frac{1}{1+e}.

Step 2

Use integration by parts to find $$\int x^{3} \log_{e} x \, dx.$$

99%

104 rated

Answer

Using integration by parts, let:
u=logexdu=1xdxu = \log_{e} x \Rightarrow du = \frac{1}{x} \, dx dv=x3dxv=x44.dv = x^{3} \, dx \Rightarrow v = \frac{x^{4}}{4}.

Now applying integration by parts:
udv=uvvdu=x44logexx441xdx=x44logex14x3dx.\int u \, dv = uv - \int v \, du = \frac{x^{4}}{4} \log_{e} x - \int \frac{x^{4}}{4} \cdot \frac{1}{x} \, dx = \frac{x^{4}}{4} \log_{e} x - \frac{1}{4} \int x^{3} \, dx.

This simplifies further to:
$$\frac{x^{4}}{4} \log_{e} x - \frac{x^{4}}{16} + C.$

Step 3

By completing the square and using the table of standard integrals, find $$\int \frac{dx}{\sqrt{2-x^{2}+5}}.$$

96%

101 rated

Answer

First, we complete the square:
2x2+5=7(x27)=7(x7)2+7.2-x^{2}+5 = 7 - (x^{2}-7) = 7 - (x - \sqrt{7})^{2} + 7.
This shows that we have a standard form integral:
dx7(x7)2.\int \frac{dx}{\sqrt{7 - (x - \sqrt{7})^{2}}}.

This can be recognized as:
dxa2x2=arcsin(xa)+C.\int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \arcsin \left( \frac{x}{a} \right) + C. In our case, this integral evaluates to the arcsine function based on our completed square.

Step 4

Find the real numbers a and b such that $$\frac{5x^{2}-3x+13}{(x-1)(x^{2}+4)}=\frac{a}{x-1}+\frac{bx-1}{x^{2}+4}.$$

98%

120 rated

Answer

To find the values of a and b, we start by equating the fractions:
5x23x+13=a(x2+4)+(bx1)(x1).5x^{2}-3x+13 = a(x^{2}+4) + (bx-1)(x-1).

Expand and simplify the right-hand side to collect terms of like degrees. By matching coefficients from both sides, we can solve for a and b in a system of equations.

Step 5

Find $$\int \frac{5x^{2}-3x+13}{(x-1)(x^{2}+4)} \, dx.$$

97%

117 rated

Answer

Using the values of a and b found previously, we can decompose the fraction into simpler parts. Let:
ax1+bx1x2+4.\frac{a}{x-1}+\frac{bx-1}{x^{2}+4}.

Integrate each term separately using basic integral formulas. For instance, the integral of(\frac{1}{x-1}) gives (\ln |x-1|) while the remaining polynomial terms can be integrated using standard methods.

Step 6

Use the substitution $x=3\sin\theta$ to evaluate $$\int_{0}^{\frac{3}{2}} \frac{dx}{(9-x^{2})^{\frac{3}{2}}}.$$

97%

121 rated

Answer

Using the substitution:
x=3sinθ,x=3\sin\theta,
we derive:
dx=3cosθdθ.dx = 3\cos\theta \, d\theta.

The limits change accordingly: when x=0x=0, heta=0 heta=0; when x=32x=\frac{3}{2}, heta=arcsin(12)=π6. heta=\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}.

Transformation of the integral yields:
0π63cosθ(99sin2θ)32dθ=0π63cosθ(9cos2θ)32dθ.\int_{0}^{\frac{\pi}{6}} \frac{3\cos\theta}{(9-9\sin^{2}\theta)^{\frac{3}{2}}} \, d\theta = \int_{0}^{\frac{\pi}{6}} \frac{3\cos\theta}{(9\cos^{2}\theta)^{\frac{3}{2}}} \, d\theta.

This can be simplified further to complete the evaluation.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;