Photo AI

The hyperbolas $H_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2: \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ are shown in the diagram - HSC - SSCE Mathematics Extension 2 - Question 13 - 2015 - Paper 1

Question icon

Question 13

The-hyperbolas-$H_1:-\frac{x^2}{a^2}---\frac{y^2}{b^2}-=-1$-and-$H_2:-\frac{x^2}{a^2}---\frac{y^2}{b^2}-=--1$-are-shown-in-the-diagram-HSC-SSCE Mathematics Extension 2-Question 13-2015-Paper 1.png

The hyperbolas $H_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2: \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ are shown in the diagram. Let $P(sec\theta, b tan\thet... show full transcript

Worked Solution & Example Answer:The hyperbolas $H_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2: \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ are shown in the diagram - HSC - SSCE Mathematics Extension 2 - Question 13 - 2015 - Paper 1

Step 1

Verify that the coordinates of $Q(a tan\theta, b sec\theta)$ satisfy the equation for $H_2$

96%

114 rated

Answer

To verify that the point Q(atanθ,bsecθ)Q(a tan\theta, b sec\theta) satisfies the equation of the hyperbola H2:x2a2y2b2=1H_2: \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1, we substitute the coordinates into the equation:

Substituting: rac{(a tan\theta)^2}{a^2} - \frac{(b sec\theta)^2}{b^2} = \frac{a^2 tan^2\theta}{a^2} - \frac{b^2 sec^2\theta}{b^2}

This simplifies to: tan2θsec2θtan^2\theta - sec^2\theta

Using the identity sec2θ=1+tan2θsec^2\theta = 1 + tan^2\theta, we have: tan2θ(1+tan2θ)=1tan^2\theta - (1 + tan^2\theta) = -1

Thus, the coordinates of QQ satisfy the equation of H2H_2.

Step 2

Show that the equation of the line $PQ$ is $bx + ay = ab(tan\theta + sec\theta)$

99%

104 rated

Answer

The coordinates of point PP on the hyperbola are (secθ,btanθ)(sec\theta, b tan\theta) and QQ has coordinates (atanθ,bsecθ)(a tan\theta, b sec\theta).

To find the slope of line PQPQ, we first calculate: m=bsecθbtanθatanθsecθ=bsecθtanθatanθsecθm = \frac{b sec\theta - b tan\theta}{a tan\theta - sec\theta} = b \frac{sec\theta - tan\theta}{a tan\theta - sec\theta}

Using the point-slope formula, the equation of line PQPQ can be written as: ybtanθ=m(xsecθ)y - b tan\theta = m(x - sec\theta)

Expanding this gives: y=btanθ+m(xsecθ)y = b tan\theta + m(x - sec\theta)

Substituting and rearranging leads to the desired form: bx+ay=ab(tanθ+secθ)bx + ay = ab(tan\theta + sec\theta).

Step 3

Prove that the area of $\angle OPQ$ is independent of $\theta$

96%

101 rated

Answer

To find the area of triangle OPQOPQ, we can use the formula: Area=12x1(y2y3)+x2(y3y1)+x3(y1y2)Area = \frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|

Assigning coordinates: O(0,0)O(0,0), P(secθ,btanθ)P(sec\theta, b tan\theta), and Q(atanθ,bsecθ)Q(a tan\theta, b sec\theta), we have:

Calculating: Area=120(btanθbsecθ)+secθ(bsecθ0)+atanθ(0btanθ)Area = \frac{1}{2} |0(b tan\theta - b sec\theta) + sec\theta(b sec\theta - 0) + a tan\theta(0 - b tan\theta)| =12secθ(bsecθ)atanθ(btanθ) = \frac{1}{2} |sec\theta(b sec\theta) - a tan\theta(b tan\theta)| =12bsec2θabtan2θ = \frac{1}{2} |b sec^2\theta - ab tan^2\theta|

Since sec2θtan2θ=1sec^2\theta - tan^2\theta = 1, this simplifies to: Area=12bArea = \frac{1}{2} |b|

Hence, the area is constant and does not depend on θ\theta.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;