Photo AI

Find $$\int_{0}^{3} \tan^3{x} \sec^2{x} \, dx.$$ (b) By completing the square, find $$\int \frac{dx}{\sqrt{-4+x^{2}+1}}.$$ (c) Use integration by parts to evaluate $$\int \frac{\ln{x}}{x^{2}} \, dx.$$ (d) Use the substitution $u = \sqrt{x-1}$ to evaluate $$\int_{2}^{3} \frac{1+x}{\sqrt{1}} \, dx.$$ (e) (i) Find real numbers $\alpha$ and $b$ such that $$\frac{5x^{2}-3x+1}{(x+1)(x-2)} = \frac{\alpha x + 1}{x+1} + \frac{b}{x-2}.$$ (ii) Find $$\int \frac{5x^{2}-3x+1}{(x^{2}+1)(x-2)} \, dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2001 - Paper 1

Question icon

Question 1

Find-$$\int_{0}^{3}-\tan^3{x}-\sec^2{x}-\,-dx.$$---(b)-By-completing-the-square,-find--$$\int-\frac{dx}{\sqrt{-4+x^{2}+1}}.$$---(c)-Use-integration-by-parts-to-evaluate--$$\int-\frac{\ln{x}}{x^{2}}-\,-dx.$$---(d)-Use-the-substitution-$u-=-\sqrt{x-1}$-to-evaluate--$$\int_{2}^{3}-\frac{1+x}{\sqrt{1}}-\,-dx.$$---(e)-(i)-Find-real-numbers-$\alpha$-and-$b$-such-that--$$\frac{5x^{2}-3x+1}{(x+1)(x-2)}-=-\frac{\alpha-x-+-1}{x+1}-+-\frac{b}{x-2}.$$---(ii)-Find--$$\int-\frac{5x^{2}-3x+1}{(x^{2}+1)(x-2)}-\,-dx.$$-HSC-SSCE Mathematics Extension 2-Question 1-2001-Paper 1.png

Find $$\int_{0}^{3} \tan^3{x} \sec^2{x} \, dx.$$ (b) By completing the square, find $$\int \frac{dx}{\sqrt{-4+x^{2}+1}}.$$ (c) Use integration by parts to evalu... show full transcript

Worked Solution & Example Answer:Find $$\int_{0}^{3} \tan^3{x} \sec^2{x} \, dx.$$ (b) By completing the square, find $$\int \frac{dx}{\sqrt{-4+x^{2}+1}}.$$ (c) Use integration by parts to evaluate $$\int \frac{\ln{x}}{x^{2}} \, dx.$$ (d) Use the substitution $u = \sqrt{x-1}$ to evaluate $$\int_{2}^{3} \frac{1+x}{\sqrt{1}} \, dx.$$ (e) (i) Find real numbers $\alpha$ and $b$ such that $$\frac{5x^{2}-3x+1}{(x+1)(x-2)} = \frac{\alpha x + 1}{x+1} + \frac{b}{x-2}.$$ (ii) Find $$\int \frac{5x^{2}-3x+1}{(x^{2}+1)(x-2)} \, dx.$$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2001 - Paper 1

Step 1

Find $$\int_{0}^{3} \tan^3{x} \sec^2{x} \, dx.$$

96%

114 rated

Answer

To solve this integral, we start by using the identity for the derivative of ( \tan{x} ): ( \frac{d}{dx} \tan{x} = \sec^2{x} ). Thus, we can rewrite the integral using substitution. Let ( u = \tan{x} ), therefore ( du = \sec^2{x} , dx ). The bounds for ( x ) change from 0 to 3, which translates into the values of ( u ) for those bounds. Evaluating the integral, we get:

tan3xsec2xdx=14tan4x03.\int \tan^3{x} \sec^2{x} \, dx = \frac{1}{4} \tan^4{x} \Big|_{0}^{3}.

Step 2

By completing the square, find $$\int \frac{dx}{\sqrt{-4+x^{2}+1}}.$$

99%

104 rated

Answer

To complete the square for the expression (-4 + x^{2} + 1), we get:

x23=(x3)(x+3).\sqrt{x^2 - 3} = \sqrt{(x - \sqrt{3})(x + \sqrt{3})}.

The integral becomes: dx(x3)(x+3)\int \frac{dx}{\sqrt{(x - \sqrt{3})(x + \sqrt{3})}} To evaluate this integral, we can use trigonometric or hyperbolic substitution based on the completed square.

Step 3

Use integration by parts to evaluate $$\int \frac{\ln{x}}{x^{2}} \, dx.$$

96%

101 rated

Answer

For this integral, we will use the integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du. Let:

  • ( u = \ln{x} \Rightarrow du = \frac{1}{x} , dx )
  • ( dv = \frac{1}{x^2} , dx \Rightarrow v = -\frac{1}{x} ) Then we can substitute into the parts formula:

lnxx2dx=lnxx1x(1x)dx\int \frac{\ln{x}}{x^{2}} \, dx = -\frac{\ln{x}}{x} - \int -\frac{1}{x} \left(-\frac{1}{x}\right) \, dx This simplifies to: lnxx2dx=lnxx+1x2dx\int \frac{\ln{x}}{x^{2}} \, dx = -\frac{\ln{x}}{x} + \int \frac{1}{x^2} \, dx

Step 4

Use the substitution $u = \sqrt{x-1}$ to evaluate $$\int_{2}^{3} \frac{1+x}{\sqrt{1}} \, dx.$$

98%

120 rated

Answer

Starting with the substitution: Let ( u = \sqrt{x-1} \Rightarrow x = u^2 + 1 \Rightarrow dx = 2u , du ). We also need to change the bounds:

  • When ( x = 2, u = 1 )
  • When ( x = 3, u = \sqrt{2} ) Substituting these into the integral, we have:

121+(u2+1)u22udu\int_{1}^{\sqrt{2}} \frac{1 + (u^2 + 1)}{\sqrt{u^2}} \cdot 2u \, du Which simplifies to an integral that can be evaluated.

Step 5

Find real numbers $\alpha$ and $b$ such that $$\frac{5x^{2}-3x+1}{(x+1)(x-2)} = \frac{\alpha x + 1}{x+1} + \frac{b}{x-2}.$$

97%

117 rated

Answer

To find the values of ( \alpha ) and ( b ), we can assume:

5x23x+1=(αx+1)(x2)+b(x+1).5x^{2}-3x+1 = (\alpha x + 1)(x-2) + b(x+1). By expanding both sides and equating coefficients, we will find a system of equations to solve for ( \alpha ) and ( b ).

Step 6

Find $$\int \frac{5x^{2}-3x+1}{(x^{2}+1)(x-2)} \, dx.$$

97%

121 rated

Answer

To evaluate this integral, we will first perform partial fraction decomposition on the expression:

5x23x+1(x2+1)(x2)\frac{5x^{2}-3x+1}{(x^{2}+1)(x-2)}. Next, we will express this as: A1x2+1+B1x2A \cdot \frac{1}{x^{2}+1} + B \cdot \frac{1}{x-2} We will determine the constants ( A ) and ( B ), then integrate each term separately.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;