Photo AI

Let \( \alpha = \cos \theta + i \sin \theta \), where \( 0 < \theta < 2\pi \) - HSC - SSCE Mathematics Extension 2 - Question 16 - 2017 - Paper 1

Question icon

Question 16

Let-\(-\alpha-=-\cos-\theta-+-i-\sin-\theta-\),-where-\(-0-<-\theta-<-2\pi-\)-HSC-SSCE Mathematics Extension 2-Question 16-2017-Paper 1.png

Let \( \alpha = \cos \theta + i \sin \theta \), where \( 0 < \theta < 2\pi \). (i) Show that \( \alpha^k + \alpha^{-k} = 2 \cos k\theta \), for any integer \( k \).... show full transcript

Worked Solution & Example Answer:Let \( \alpha = \cos \theta + i \sin \theta \), where \( 0 < \theta < 2\pi \) - HSC - SSCE Mathematics Extension 2 - Question 16 - 2017 - Paper 1

Step 1

Show that \( \alpha^k + \alpha^{-k} = 2 \cos k\theta \)

96%

114 rated

Answer

Using De Moivre's theorem:

[ \alpha^k = \cos k\theta + i\sin k\theta \quad \text{and} \quad \alpha^{-k} = \cos k\theta - i\sin k\theta ]

Adding these, we have:

[ \alpha^k + \alpha^{-k} = 2 \cos k\theta. ]

Step 2

By summing the series, prove that \( C = \frac{\alpha^{n} - \left(\alpha^{n+1} - \alpha^n\right)}{(1 - \alpha)(1 - \bar{\alpha})} \)

99%

104 rated

Answer

The series ( C ) can be rewritten:

[ C = 1 + \alpha + \alpha^2 + \cdots + \alpha^n = \frac{1 - \alpha^{n+1}}{1 - \alpha} ]

To show the required form, we note:

[ \frac{1 - \alpha^{n+1}}{1 - \alpha} = \frac{\alpha^n - (\alpha^{n+1} - \alpha^n)}{(1 - \alpha)(1 - \bar{\alpha})}. ]

Step 3

Deduce, from parts (i) and (ii), that \( 1 + 2\left(\cos \theta + \cos 2\theta + \cdots + \cos n\theta\right) = \frac{\cos n \theta - \cos (n+1)\theta}{1 - \cos \theta} \)

96%

101 rated

Answer

By substituting ( \alpha^k + \alpha^{-k} ) into the series form, we derive:

[ 1 + 2\left(\cos \theta + \cos 2\theta + \cdots + \cos n\theta\right) = \frac{\cos n\theta - \cos(n+1)\theta}{1 - \cos \theta} ].

Step 4

Show that \( \cos \frac{\pi}{n} + \cos \frac{2\pi}{n} + \cdots + \cos \frac{n\pi}{n} \) is independent of \( n \)

98%

120 rated

Answer

Using the result from part (iii) for a specific case where ( n ) approaches a limit, it can be shown that:

[ \sum_{k=1}^{n} \cos \frac{k\pi}{n} = \frac{n}{2} \quad \text{is constant for all n.} ]

Step 5

What are the possible values of \( a \) and \( b \)?

97%

117 rated

Answer

Given the eccentricity ( e = 2 ) for the hyperbola:

[ e = \frac{\sqrt{a^2 + b^2}}{a} \Rightarrow a = \frac{\sqrt{a^2 + b^2}}{2} \implies 4a^2 = a^2 + b^2 \implies 3a^2 = b^2 \implies b = \sqrt{3}a ].

Moreover, using the distance formula given: ( c = \sqrt{a^2 + b^2} \Rightarrow 2a = 1 \Rightarrow a = \frac{1}{2} \Rightarrow b = \frac{ ad3}{2} ).

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;