Photo AI

Evaluate $$egin{align*} ext{(a)} \ ext{Evaluate } \ ext{ } \int_{0}^{1} \frac{e^x}{(1+e^x)^2}dx - HSC - SSCE Mathematics Extension 2 - Question 1 - 2003 - Paper 1

Question icon

Question 1

Evaluate--$$egin{align*}--ext{(a)}-\--ext{Evaluate-}-\--ext{-}-\int_{0}^{1}-\frac{e^x}{(1+e^x)^2}dx-HSC-SSCE Mathematics Extension 2-Question 1-2003-Paper 1.png

Evaluate $$egin{align*} ext{(a)} \ ext{Evaluate } \ ext{ } \int_{0}^{1} \frac{e^x}{(1+e^x)^2}dx. \end{align*}$$ (b) Use integration by parts to find $$egin{... show full transcript

Worked Solution & Example Answer:Evaluate $$egin{align*} ext{(a)} \ ext{Evaluate } \ ext{ } \int_{0}^{1} \frac{e^x}{(1+e^x)^2}dx - HSC - SSCE Mathematics Extension 2 - Question 1 - 2003 - Paper 1

Step 1

Evaluate $$\int_{0}^{1} \frac{e^x}{(1+e^x)^2}dx$$

96%

114 rated

Answer

To evaluate this integral, we start with the substitution:

\Rightarrow du = e^x \, dx$$ Changing the limits of integration: - When $x = 0$, $u = 2$. - When $x = 1$, $u = 1 + e$. Now, rewriting the integral: $$\int_{2}^{1+e} \frac{1}{u^2} du = -\frac{1}{u} \Bigg|_{2}^{1+e} = -\left( \frac{1}{1+e} - \frac{1}{2} \right) = \frac{1}{2} - \frac{1}{1+e}$$

Step 2

Use integration by parts to find $$\int x^3 \log_e x \, dx$$

99%

104 rated

Answer

Let:

  • u=logexdu=1xdxu = \log_e x \Rightarrow du = \frac{1}{x} dx
  • dv=x3dxv=x44dv = x^3 dx \Rightarrow v = \frac{x^4}{4}

Applying integration by parts:

x3logexdx=uvvdu=x44logexx441xdx=x44logex14x3dx\int x^3 \log_e x \, dx = uv - \int v \, du = \frac{x^4}{4} \log_e x - \int \frac{x^4}{4} \cdot \frac{1}{x} dx = \frac{x^4}{4} \log_e x - \frac{1}{4} \int x^3 dx

Continuing:

=x44logex14x44=x44logexx416+C= \frac{x^4}{4} \log_e x - \frac{1}{4} \cdot \frac{x^4}{4} = \frac{x^4}{4} \log_e x - \frac{x^4}{16} + C

Step 3

By completing the square and using the table of standard integrals, find $$\int \frac{dx}{\sqrt{2x-5}}$$

96%

101 rated

Answer

To evaluate this integral, we first complete the square:

dx2x5=12(x52)dx\int \frac{dx}{\sqrt{2x-5}} = \int \frac{1}{\sqrt{2(x - \frac{5}{2})}} \, dx

Using substitution u=2x52u = \sqrt{2} \sqrt{x - \frac{5}{2}}, we can transform the integral to:

=12duu=12logeu+C= \frac{1}{\sqrt{2}} \int \frac{du}{u} = \frac{1}{\sqrt{2}} \log_e |u| + C

Substituting back in for uu gives:

=12loge2x52+C= \frac{1}{\sqrt{2}} \log_e |\sqrt{2} \sqrt{x - \frac{5}{2}}| + C

Step 4

Find the real numbers a and b such that $$\frac{5x^2 - 3x + 13}{(x-1)(x^2 + 4)} = \frac{a}{x-1} + \frac{bx-1}{x^2 + 4}$$

98%

120 rated

Answer

Start by multiplying both sides by (x1)(x2+4)(x-1)(x^2 + 4):

5x23x+13=a(x2+4)+(bx1)(x1)5x^2 - 3x + 13 = a(x^2 + 4) + (bx - 1)(x - 1)

Expanding the right-hand side, we get:

5x23x+13=ax2+4a+bx2bxx+15x^2 - 3x + 13 = ax^2 + 4a + bx^2 - bx - x + 1

Combining like terms gives:

(a+b)x2+(4ab1)x+(4a+1)=5x23x+13(a + b)x^2 + (4a - b - 1)x + (4a + 1) = 5x^2 - 3x + 13

From which we can derive the equations:

  • a+b=5a + b = 5
  • 4ab1=34a - b - 1 = -3
  • 4a+1=134a + 1 = 13

Solving these, we find:

  • a=3,b=2a = 3, b = 2.

Step 5

Find $$\int \frac{5x^2 - 3x + 13}{(x-1)(x^2 + 4)} \, dx$$

97%

117 rated

Answer

Using the results from part (d), we have:

3x1dx+2x1x2+4dx\int \frac{3}{x-1} \, dx + \int \frac{2x-1}{x^2+4} \, dx

The first integral evaluates to:

3logex1+C13 \log_e |x-1| + C_1

The second integral requires completing the square or recognizing it as a standard integral:

2xx2+4dx1x2+4dx\int \frac{2x}{x^2 + 4} \, dx - \int \frac{1}{x^2 + 4} \, dx

Thus,

12logex2+412tan1(x2)+C2\frac{1}{2} \log_e |x^2 + 4| - \frac{1}{2} \tan^{-1}\left( \frac{x}{2} \right) + C_2

Combining, the overall answer is:

3logex1+12logex2+412tan1(x2)+C3 \log_e |x-1| + \frac{1}{2} \log_e |x^2 + 4| - \frac{1}{2} \tan^{-1}\left( \frac{x}{2} \right) + C

Step 6

Use the substitution $$x = 3\sin \theta$$ to evaluate $$\int_{0}^{\frac{3}{2}} \frac{dx}{(9 - x^2)^{\frac{3}{2}}}$$

97%

121 rated

Answer

Using the substitution x=3sinθx = 3\sin \theta, we find:

dx=3cosθdθdx = 3\cos \theta \, d\theta

The limits transform to:

  • When x=0x = 0, θ=0\theta = 0.
  • When x=32x = \frac{3}{2}, θ=sin1(12)=π6\theta = \sin^{-1}\left( \frac{1}{2} \right) = \frac{\pi}{6}.

The integral becomes:

0π63cosθdθ(99sin2θ)32=0π63cosθdθ(9(cos2θ))32=0π63cosθdθ27cos3θ=190π6sec2θdθ\int_{0}^{\frac{\pi}{6}} \frac{3\cos\theta \, d\theta}{(9 - 9\sin^2\theta)^{\frac{3}{2}}} = \int_{0}^{\frac{\pi}{6}} \frac{3\cos\theta \, d\theta}{(9(\cos^2\theta))^{\frac{3}{2}}} = \int_{0}^{\frac{\pi}{6}} \frac{3\cos\theta \, d\theta}{27\cos^3\theta} = \frac{1}{9} \int_{0}^{\frac{\pi}{6}} \sec^2\theta \, d\theta

This evaluates to:

19tanθ0π6=19(tan(π6)tan(0))=19(130)=193\frac{1}{9} \tan \theta \Bigg|_{0}^{\frac{\pi}{6}} = \frac{1}{9} \left( \tan\left( \frac{\pi}{6} \right) - \tan(0) \right) = \frac{1}{9} \left( \frac{1}{\sqrt{3}} - 0 \right) = \frac{1}{9\sqrt{3}}

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;