Photo AI

Find $$ \int x \ln x \, dx $$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2011 - Paper 1

Question icon

Question 1

Find--$$-\int-x-\ln-x-\,-dx-$$-HSC-SSCE Mathematics Extension 2-Question 1-2011-Paper 1.png

Find $$ \int x \ln x \, dx $$. Evaluate $$ \int_0^3 \sqrt{x^2 + 1} \, dx $$. Find real numbers $a$, $b$ and $c$ such that $$ \frac{1}{x^2(x-1)} = \frac{a}{x} + ... show full transcript

Worked Solution & Example Answer:Find $$ \int x \ln x \, dx $$ - HSC - SSCE Mathematics Extension 2 - Question 1 - 2011 - Paper 1

Step 1

Find $$ \int x \ln x \, dx $$

96%

114 rated

Answer

This integral can be solved using integration by parts. Let:

  • u=lnxu = \ln x ( \Rightarrow \frac{du}{dx} = \frac{1}{x} ) ( \Rightarrow du = \frac{1}{x} , dx$
  • dv=xdxdv = x \, dx ( \Rightarrow v = \frac{x^2}{2}$

Applying the integration by parts formula:

udv=uvvdu\int u \, dv = uv - \int v \, du,

we get:

xlnxdx=x22lnxx221xdx\int x \ln x \, dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx

This simplifies to:

=x22lnx12xdx=x22lnxx24+C= \frac{x^2}{2} \ln x - \frac{1}{2} \int x \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C.

Step 2

Evaluate $$ \int_0^3 \sqrt{x^2 + 1} \, dx $$

99%

104 rated

Answer

This integral can be solved by substitution. Let:

  • x=tanθx = \tan \theta, then dx=sec2θdθdx = \sec^2 \theta \, d\theta.
  • The limits change to 00 to rac{\pi}{4} as xx goes from 00 to 33.

So, we have:

x2+1dx=tan2θ+1sec2θdθ=sec3θdθ\int \sqrt{x^2 + 1} \, dx = \int \sqrt{\tan^2 \theta + 1} \cdot \sec^2 \theta \, d\theta = \int \sec^3 \theta \, d\theta.

This is a standard integral:

sec3θdθ=12(secθtanθ+lnsecθ+tanθ)+C\int \sec^3 \theta \, d\theta = \frac{1}{2}(\sec \theta \tan \theta + \ln | \sec \theta + \tan \theta |) + C.

Step 3

Find real numbers $a$, $b$ and $c$ such that $$ \frac{1}{x^2(x-1)} = \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x-1} $$

96%

101 rated

Answer

To find aa, bb, and cc, multiply through by the common denominator x2(x1)x^2(x-1):

1=ax(x1)+b(x1)+cx21 = a x (x-1) + b (x-1) + c x^2.

Expanding and rearranging:

1=(a+c)x2+(a+b)xb1 = (a + c)x^2 + (-a + b)x - b.

Setting up the equations:

  1. a+c=0a + c = 0
  2. a+b=0-a + b = 0
  3. b=1-b = 1

Solving gives b=1b = -1, a=1a = -1, and c=1c = 1.

Step 4

Hence, find $$ \int \frac{1}{x^2(x-1)} \, dx $$

98%

120 rated

Answer

Using the values found:

1x2(x1)=1x+1x2+1x1\frac{1}{x^2(x-1)} = \frac{-1}{x} + \frac{-1}{x^2} + \frac{1}{x-1}.

Integrating each term separately:

1xdx1x2dx+1x1dx=lnx+1x+lnx1+C-\int \frac{1}{x} \, dx - \int \frac{1}{x^2} \, dx + \int \frac{1}{x-1} \, dx = -\ln |x| + \frac{1}{x} + \ln |x-1| + C.

Step 5

Find $$ \int \cos^3 \theta \, d\theta $$

97%

117 rated

Answer

To solve this integral, we can use the identity:

cos3θ=cosθ(1sin2θ)\cos^3 \theta = \cos \theta (1 - \sin^2 \theta).

This gives:

cos3θdθ=cosθdθcosθsin2θdθ\int \cos^3 \theta \, d\theta = \int \cos \theta \, d\theta - \int \cos \theta \sin^2 \theta \, d\theta.

The first integral is:

cosθdθ=sinθ\int \cos \theta \, d\theta = \sin \theta,

The second can be solved using substitution: Let u=sinθu = \sin \theta, then du=cosθdθdu = \cos \theta \, d\theta:

u2du=u33=sin3θ3-\int u^2 \, du = -\frac{u^3}{3} = -\frac{\sin^3 \theta}{3}.

Thus, combining gives:

cos3θdθ=sinθsin3θ3+C\int \cos^3 \theta \, d\theta = \sin \theta - \frac{\sin^3 \theta}{3} + C.

Step 6

Evaluate $$ \int_{-1}^1 \frac{1}{5 - 2t^2} \, dt $$

97%

121 rated

Answer

This integral can be solved with a simple substitution. The denominator can be factored or evaluated with the observation of symmetry:

Using the substitution u=52t2u = 5 - 2t^2, the limits change accordingly:

Now, we can express it in simpler form and recognize that it's an even function:

Thus,

the solution can be derived as:

= rac{1}{\sqrt{10}} [\tan^{-1} (\frac{t}{\sqrt{5/2}})]_{-1}^{1},

which evaluates the bounds to give a final answer.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;