Photo AI

a) Express \( \frac{3 - i}{2 + i} \) in the form \( x + iy \), where \( x \) and \( y \) are real numbers - HSC - SSCE Mathematics Extension 2 - Question 11 - 2022 - Paper 1

Question icon

Question 11

a)-Express-\(-\frac{3---i}{2-+-i}-\)-in-the-form-\(-x-+-iy-\),-where-\(-x-\)-and-\(-y-\)-are-real-numbers-HSC-SSCE Mathematics Extension 2-Question 11-2022-Paper 1.png

a) Express \( \frac{3 - i}{2 + i} \) in the form \( x + iy \), where \( x \) and \( y \) are real numbers. b) Evaluate \( \sin^2 2x \cos 2x \, dx \). c) (i) Write ... show full transcript

Worked Solution & Example Answer:a) Express \( \frac{3 - i}{2 + i} \) in the form \( x + iy \), where \( x \) and \( y \) are real numbers - HSC - SSCE Mathematics Extension 2 - Question 11 - 2022 - Paper 1

Step 1

Express \( \frac{3 - i}{2 + i} \) in the form \( x + iy \)

96%

114 rated

Answer

To express ( \frac{3 - i}{2 + i} ) in the form ( x + iy ), we multiply the numerator and denominator by the conjugate of the denominator: ( 2 - i ):

(3i)(2i)(2+i)(2i)=63i2ii24+1=6+15i5=1+(1)i. \frac{(3 - i)(2 - i)}{(2 + i)(2 - i)} = \frac{6 - 3i - 2i - i^2}{4 + 1} = \frac{6 + 1 - 5i}{5} = 1 + \left( -1 \right)i.

Thus, ( x = 1 ) and ( y = -1 ).

Step 2

Evaluate \( \sin^2 2x \cos 2x \, dx \)

99%

104 rated

Answer

To evaluate ( \sin^2 2x \cos 2x , dx ), we can use the substitution ( u = \sin 2x ), then ( du = 2\cos 2x , dx ), hence:

sin22xcos2xdx=12u2du=12u33+C=sin32x6+C. \int \sin^2 2x \cos 2x \, dx = \frac{1}{2} \int u^2 \, du = \frac{1}{2} \cdot \frac{u^3}{3} + C = \frac{\sin^3 2x}{6} + C.

Step 3

Write the complex number \( -\sqrt{3} + i \) in exponential form.

96%

101 rated

Answer

To write ( -\sqrt{3} + i ) in exponential form, we first convert it to polar coordinates:

  1. Calculate the modulus:

r=(3)2+(1)2=3+1=2. r = \sqrt{(-\sqrt{3})^2 + (1)^2} = \sqrt{3 + 1} = 2.

  1. Calculate the argument:

θ=tan1(13)=5π6. \theta = \tan^{-1}\left(\frac{1}{-\sqrt{3}}\right) = \frac{5\pi}{6}.

Thus, the exponential form is:

3+i=2ei5π6. -\sqrt{3} + i = 2e^{i\frac{5\pi}{6}}.

Step 4

Hence, find the exact value of \( (-\sqrt{3} + i)^{10} \), giving your answer in the form \( x + iy \).

98%

120 rated

Answer

Using the exponential form, we can find:

(3+i)10=(2ei5π6)10=210ei50π6=1024ei25π3. (-\sqrt{3} + i)^{10} = \left(2e^{i\frac{5\pi}{6}}\right)^{10} = 2^{10} e^{i\frac{50\pi}{6}} = 1024 \cdot e^{i\frac{25\pi}{3}}.

Reducing the exponent:

25π38π=25π24π3=π3. \frac{25\pi}{3} - 8\pi = \frac{25\pi - 24\pi}{3} = \frac{\pi}{3}.

Thus:
(3+i)10=1024eiπ3=1024(cosπ3+isinπ3)=1024(12+i32)=512+5123i.(-\sqrt{3} + i)^{10} = 1024 e^{i\frac{\pi}{3}} = 1024 \left( \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) = 1024 \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 512 + 512\sqrt{3}i.

Step 5

Find the size of \( \angle ABC \).

97%

117 rated

Answer

To find the size of ( \angle ABC ):

  1. Compute the vectors ( \overrightarrow{AB} ) and ( \overrightarrow{AC} ):
    ( \overrightarrow{AB} = B - A = (0 - 1, 2 - (-1), -1 - 2) = (-1, 3, -3) )
    ( \overrightarrow{AC} = C - A = (2 - 1, 1 - (-1), 1 - 2) = (1, 2, -1) )

  2. Use the dot product to find the angle:
    cosABC=ABACABAC\cos \angle ABC = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| |\overrightarrow{AC}|}
    where ( \overrightarrow{AB} \cdot \overrightarrow{AC} = (-1)(1) + (3)(2) + (-3)(-1) = -1 + 6 + 3 = 8 $$
    and ( |\overrightarrow{AB}| = \sqrt{(-1)^2 + (3)^2 + (-3)^2} = \sqrt{1 + 9 + 9} = \sqrt{19} )
    and ( |\overrightarrow{AC}| = \sqrt{(1)^2 + (2)^2 + (-1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6} ).

  3. Plug these into the cosine formula:
    cosABC=8196\cos \angle ABC = \frac{8}{\sqrt{19} \cdot \sqrt{6}}
    Calculate the angle with ( \angle ABC = \cos^{-1}\left( \frac{8}{\sqrt{114}} \right) ), rounding to the nearest degree gives the size of ( \angle ABC ).

Step 6

Find the equation of the line \( l_2 \) in the form \( y = mx + c. \)

97%

121 rated

Answer

Since ( l_2 ) is parallel to ( l_1 ), it has the same slope. The slope of ( l_1 ) can be derived from its equation. We simplify the equation of ( l_1 ):

  1. From the equation of ( l_1 ): x1=y7+α(3)\frac{x}{-1} = \frac{y}{-7} + \alpha(3)
    Rearranging gives us a slope of ( m = \frac{-7}{-1} = 7. )

  2. Using point-slope form for point ( A(-6, 5) ): y5=7(x+6).y - 5 = 7(x + 6).
    Simplifying gives: y=7x+42+5y=7x+47. y = 7x + 42 + 5 \Rightarrow y = 7x + 47.

Step 7

Find \( \int \frac{dx}{1 + \cos x - \sin x} \).

96%

114 rated

Answer

Using the substitution ( t = \tan \frac{x}{2} ), we know:

dx=21+t2dt.dx = \frac{2}{1 + t^2} dt.

Substituting yields:

dx1+cosxsinx=21+t2dt1+1t21+t2=2dt2+2t2=dt1+t2=tan1(t)+C\int \frac{dx}{1 + \cos x - \sin x} = \int \frac{\frac{2}{1 + t^2} dt}{1 + \frac{1 - t^2}{1 + t^2}} = \int \frac{2 dt}{2 + 2t^2} = \int \frac{dt}{1 + t^2} = \tan^{-1}(t) + C

Thus: =tan1(tanx2)+C=x2+C. = \tan^{-1}\left( \tan \frac{x}{2} \right) + C = \frac{x}{2} + C.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;