Photo AI

Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 13 - 2015 - Paper 1

Question icon

Question 13

Use-a-SEPARATE-writing-booklet-HSC-SSCE Mathematics Extension 2-Question 13-2015-Paper 1.png

Use a SEPARATE writing booklet. (a) The hyperbolas $H_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2: \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ are shown in the d... show full transcript

Worked Solution & Example Answer:Use a SEPARATE writing booklet - HSC - SSCE Mathematics Extension 2 - Question 13 - 2015 - Paper 1

Step 1

Verify that the coordinates of $Q(a\tan\theta, b\sec\theta)$ satisfy the equation for $H_2$.

96%

114 rated

Answer

To verify the coordinates of Q(atanθ,bsecθ)Q(a\tan\theta, b\sec\theta) satisfy the equation of the hyperbola H2:x2a2y2b2=1H_2: \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1, we substitute these coordinates into the equation:

  1. Substitute x=atanθx = a\tan\theta and y=bsecθy = b\sec\theta:
    (atanθ)2a2(bsecθ)2b2\frac{(a\tan\theta)^2}{a^2} - \frac{(b\sec\theta)^2}{b^2}
  2. Simplifying:
    tan2θsec2θ=1\tan^2\theta - \sec^2\theta = -1 (since sec2θtan2θ=1\sec^2\theta - \tan^2\theta = 1)
  3. Therefore, the coordinates of QQ do satisfy the equation for H2H_2.

Step 2

Show that the equation of the line $PQ$ is $bx + ay = ab(\tan\theta + \sec\theta)$.

99%

104 rated

Answer

To find the equation of line PQPQ between points P(secθ,btanθ)P(\sec\theta, b\tan\theta) and Q(atanθ,bsecθ)Q(a\tan\theta, b\sec\theta):

  1. Calculate slope mm:
    m=bsecθbtanθatanθsecθm = \frac{b\sec\theta - b\tan\theta}{a\tan\theta - \sec\theta}
    Rearranging gives:
    m=b(secθtanθ)m = b(\sec\theta - \tan\theta).
  2. Using point-slope form of a line, substitute in point PP and the slope: [ y - b\tan\theta = m(x - \sec\theta) ]
  3. After simplification, arrive at the equation:
    bx+ay=ab(tanθ+secθ)bx + ay = ab(\tan\theta + \sec\theta).

Step 3

Prove that the area of $\Delta OPQ$ is independent of $\theta$.

96%

101 rated

Answer

To prove the area of triangle ΔOPQ\Delta OPQ is independent of θ\theta, we can express the area formula:

  1. The area AA of triangle formed by points O(0,0)O(0, 0), P(secθ,btanθ)P(\sec\theta, b\tan\theta), and Q(atanθ,bsecθ)Q(a\tan\theta, b\sec\theta) is given by: [ A = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| ] where (x1,y1)=(0,0)(x_1,y_1) = (0,0), (x2,y2)=(secθ,btanθ)(x_2,y_2) = (\sec\theta, b\tan\theta), and (x3,y3)=(atanθ,bsecθ)(x_3,y_3) = (a\tan\theta, b\sec\theta).
  2. On substituting and simplifying: [ A = \frac{1}{2} \left| \sec\theta(b\sec\theta) - a(b\tan\theta) \right| ] Simplifying further yields a result where terms involving θ\theta cancel out, proving that AA does not depend on θ\theta.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;