Photo AI

Let $z = 3 + i$ and $w = 2 - 5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1

Question icon

Question 2

Let-$z-=-3-+-i$-and-$w-=-2---5i$-HSC-SSCE Mathematics Extension 2-Question 2-2006-Paper 1.png

Let $z = 3 + i$ and $w = 2 - 5i$. Find, in the form $x + iy$, (i) $z^2$ (ii) $zw$ (iii) $\frac{w}{z}$ (i) Express $\sqrt{3 - i}$ in modulus-argument form. ... show full transcript

Worked Solution & Example Answer:Let $z = 3 + i$ and $w = 2 - 5i$ - HSC - SSCE Mathematics Extension 2 - Question 2 - 2006 - Paper 1

Step 1

Find, in the form $x + iy$, (i) $z^2$

96%

114 rated

Answer

To find z2z^2, we calculate:

z2=(3+i)2=32+23i+i2=9+6i1=8+6iz^2 = (3 + i)^2 = 3^2 + 2 \cdot 3 \cdot i + i^2 = 9 + 6i - 1 = 8 + 6i

Thus, z2=8+6iz^2 = 8 + 6i.

Step 2

Find, in the form $x + iy$, (ii) $zw$

99%

104 rated

Answer

For zwzw, we calculate:

zw=(3+i)(25i)=32+3(5i)+i2+i(5i)=615i+2i+5=1113izw = (3 + i)(2 - 5i) = 3 \cdot 2 + 3 \cdot (-5i) + i \cdot 2 + i \cdot (-5i) = 6 - 15i + 2i + 5 = 11 - 13i

Thus, zw=1113izw = 11 - 13i.

Step 3

Find, in the form $x + iy$, (iii) $\frac{w}{z}$

96%

101 rated

Answer

To compute wz\frac{w}{z}, we use:

wz=25i3+i\frac{w}{z} = \frac{2 - 5i}{3 + i}

To simplify, multiply by the conjugate:

(25i)(3i)(3+i)(3i)=62i15i+59+1=1117i10=1.11.7i\frac{(2 - 5i)(3 - i)}{(3 + i)(3 - i)} = \frac{6 - 2i - 15i + 5}{9 + 1} = \frac{11 - 17i}{10} = 1.1 - 1.7i

Thus, wz=1.11.7i\frac{w}{z} = 1.1 - 1.7i.

Step 4

Express $\sqrt{3 - i}$ in modulus-argument form (i)

98%

120 rated

Answer

First, find the modulus:

r=3i=32+(1)2=9+1=10r = |\sqrt{3 - i}| = \sqrt{3^2 + (-1)^2} = \sqrt{9 + 1} = \sqrt{10}

Then calculate the argument:

θ=tan1(13)\theta = \tan^{-1}\left(\frac{-1}{3}\right)

Thus, the modulus-argument form is:

3i=10(cosθ+isinθ)\sqrt{3 - i} = \sqrt{10} \left( \cos\theta + i\sin\theta \right)

Step 5

Express $\left(\sqrt{3 - i}\right)$ in modulus-argument form (ii)

97%

117 rated

Answer

Carrying forward, we find:

3i=10(cosθ+isinθ)\sqrt{3 - i} = \sqrt{10} \left( \cos\theta + i\sin\theta \right)

Hence, scaling this leads to:

(3i)=r1/2(cosθ2+isinθ2)\left(\sqrt{3 - i}\right) = r^{1/2} \left( \cos\frac{\theta}{2} + i\sin\frac{\theta}{2} \right)

Step 6

Hence express $\left(\sqrt{3 - i}\right)^7$ in the form $x + iy$ (iii)

97%

121 rated

Answer

Using De Moivre's theorem:

(3i)7=(r1/2)7(cos(7θ2)+isin(7θ2))=(10)7/2(cos7θ2+isin7θ2)\left(\sqrt{3 - i}\right)^7 = \left(r^{1/2}\right)^7 \left(\cos\left(\frac{7\theta}{2}\right) + i\sin\left(\frac{7\theta}{2}\right) \right) = (\sqrt{10})^{7/2} \left( \cos\frac{7\theta}{2} + i\sin\frac{7\theta}{2} \right)

Thus, simplify the expression accordingly to find xx and yy.

Step 7

Find, in modulus-argument form, all solutions of $z^3 = -1$ (c)

96%

114 rated

Answer

The equation can be rewritten as:

z3=1 (where z=eiπ)z^3 = 1 \text{ (where } z = e^{i\pi} )

The polar form gives us:

z=13(cos(π+2kπ3)+isin(π+2kπ3)),k=0,1,2z = \sqrt[3]{1} \left( \cos\left(\frac{\pi + 2k\pi}{3}\right) + i\sin\left(\frac{\pi + 2k\pi}{3}\right) \right), k = 0, 1, 2

Solving this will yield three distinct complex solutions.

Step 8

Write down the complex number corresponding to the centre of the ellipse (i)

99%

104 rated

Answer

The center of the ellipse occurs at the midpoint of the foci. Thus:

Centre: (1+92,3+32)=(5,3)\text{Centre: } \left(\frac{1+9}{2}, \frac{3+3}{2}\right) = (5, 3).

The corresponding complex number is 5+3i5 + 3i.

Step 9

Sketch the ellipse, and state the lengths of the major and minor axes (ii)

96%

101 rated

Answer

Given the equation describes an ellipse, its semi-major axis is the distance of 5 units and the semi-minor axis is 2.5 units. The ellipse is centered at 5+3i5 + 3i.

Step 10

Write down the range of $\arg(z)$ for complex numbers $z$ corresponding to points on the ellipse (iii)

98%

120 rated

Answer

The angles (arguments) for points on the ellipse will be bounded between:

arg(z)=(π2,π2)\arg(z) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)

This indicates the range of possible directions in the Argand diagram.

Join the SSCE students using SimpleStudy...

97% of Students

Report Improved Results

98% of Students

Recommend to friends

100,000+

Students Supported

1 Million+

Questions answered

;